Module MAU23206: Calculus on Manifolds
- Credit weighting (ECTS)
- 5 credits
- Semester/term taught
- Hilary term 2019-20
- Contact Hours
- 11 weeks, 3 lectures including tutorials per week
- Lecturer
- Prof Jan Manschot
- Learning Outcomes
- On successful completion of this module, students will be able to:
    - proof theorems about manifolds in euclidean space,
- proof theorems about differential forms and perform calculations with them,
- carry out integration on manifolds in euclidean space,
- explain the relation between scalar, vector & tensor fields and differential forms,
- explain, proof and apply Stokes' theorem for differential forms,
- explain and apply the Poincaré lemma.
 
- Module Content
- 
    - Manifolds in euclidean space,
- Tensors,
- Differential forms,
- Stokes' theorem,
- Poincaré Lemma.
 
- Module Prerequisite
- MAU23203
 Required reading: 
 J. R. Munkres, "Analysis on Manifolds", Westview Press (1991)
 
- Assessment Detail
- 
    "This module will be examined in a 2-hour examination in Trinity term. Continuous assessment will contribute 10% to the final grade, with the examination counting for the remaining 90%.”Re-assessments if required will consist of 100% exam. 

