Trinity College Dublin

Skip to main content.

Top Level TCD Links

Sitemap

Module MA2321: Analysis in Several Real Variables

Credit weighting (ECTS)
5 credits
Semester/term taught
Michaelmas term 2014-15
Contact Hours
11 weeks, 3 lectures including tutorials per week
Lecturer
Prof. David Simms
Learning Outcomes
On successful completion of this module, students will be able to:
  • Prove the chain rule for functions defined on finite dimensional real vector spaces;
  • Prove the inverse function theorem for functions defined on finite dimensional real vector spaces;
  • Prove the implicit function for functions defined on finite dimensional real vector spaces;
  • Define smooth manifolds, tangent spaces, vector fields, 1-forms, push-forward of tangent spaces and pull-back of 1-forms;
  • Define the differential of a scalar field, show that the differentials of coordinates are dual to the partial derivatives, and show that the differential commutes with the pull-back;
Module Content
Derivative as a linear operator, partial derivatives, C1 functions are differentiable, equality of mixed partials, inverse function theorem, implicit function theorem, smooth manifolds, tangent spaces, vector fields, 1-forms, push forward of tangent spaces and pull-back of 1-forms, diferentials.
 
Module Prerequisite
Linear Algebra (MA1212), Analysis (MA1124)
Assessment Detail
This module will be examined in a 2-hour examination in Trinity term.