Biblio Index
Export 50 results:
Author Title Type [ Year
] Filters: First Letter Of Last Name is C [Clear All Filters]
. (2023). ATMA2021 - Approximation: Theory, Methods, and Applications. Dolomites Research Notes on Approximation, 15(5), i-ii. presented at the 01/2023. Retrieved from https://drna.padovauniversitypress.it/2022/5/0
ATMA2021_PREFACE.pdf (1.17 MB). (2023). ATMA2021 - Approximation: Theory, Methods, and Applications. Dolomites Research Notes on Approximation, 15(5), i-ii. presented at the 01/2023. Retrieved from https://drna.padovauniversitypress.it/2022/5/0
ATMA2021_PREFACE.pdf (1.17 MB). (2023). The multivariate Durrmeyer-sampling type operators in functional spaces. Dolomites Research Notes on Approximation, 15(5), 128-144. presented at the 01/2023. doi:10.14658/pupj-drna-2022-5-11
COSTARELLI_et_al.pdf (783.82 KB). (2022). GBFPUM - A MATLAB Package for Partition of Unity Based Signal Interpolation and Approximation on Graphs. Dolomites Research Notes on Approximation, 15(2), 25-34. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-3
03_DRNA_SA2022.pdf (5.05 MB). (2022). Korovkin-type approximation of set-valued functions with convex graphs. Dolomites Research Notes on Approximation, 15(5), 51-55. presented at the 12/2022. doi:10.14658/pupj-drna-2022-5-5
CAMPITI.pdf (227.12 KB). (2022). A MATLAB code for the computational solution of a phase field model for pitting corrosion. Dolomites Research Notes on Approximation, 15(2), 47-65. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-5
05_DRNA_SA2022.pdf (583.5 KB). (2022). A new class of degenerate Apostol-type Hermite polynomials and applications. Dolomites Research Notes on Approximation. presented at the 04/2022, Padova, IT: Padova University Press. doi:10.14658/pupj-drna-2022-1-1
CesaranoRamirezKhan_2022_DAH.pdf (225.93 KB). (2022). Nonlinear multivariate sampling Kantorovich operators: quantitative estimates in functional spaces. Dolomites Research Notes on Approximation, 15(3), 12-25. presented at the 10/2022. doi:10.14658/pupj-drna-2022-3-3
03_cetin.pdf (279.75 KB). (2022). Nonlinear multivariate sampling Kantorovich operators: quantitative estimates in functional spaces. Dolomites Research Notes on Approximation, 15(3), 12-25. presented at the 10/2022. doi:10.14658/pupj-drna-2022-3-3
03_cetin.pdf (279.75 KB). (2022). Positivity-preserving and elementary stable nonstandard method for a COVID-19 SIR model. Dolomites Research Notes on Approximation, 15(5), 65-77. presented at the 12/2022. doi:10.14658/pupj-drna-2022-5-7
CONTE_et_al.pdf (370.75 KB). (2022). Reconstruction of volatility surfaces: a first computational study. Dolomites Research Notes on Approximation, 15(3), 37-48. presented at the 10/2022. doi:10.14658/pupj-drna-2022-3-5
05_cuomo.pdf (1.98 MB). (2022). On a set of sine and cosine Fourier transforms of nested functions. Dolomites Research Notes on Approximation, 15(1), 11-19. presented at the 11/2022. doi:10.14658/pupj-drna-2022-1-2
CaratelliRicci_2022_FTNF.pdf (11.18 MB). (2022). Software for Approximation 2022 (SA2022). Dolomites Research Notes on Approximation, 15(2), I-II. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-0
00_DRNA_SA2022.pdf (972.15 KB). (2022). Software Implementation of the Partition of Unity Method. Dolomites Research Notes on Approximation, 15(2), 35-46. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-4
04_DRNA_SA2022.pdf (655.36 KB). (2022). Solving interpolation problems on surfaces stochastically and greedily. Dolomites Research Notes on Approximation, 15(3), 26-36. presented at the 10/2022. doi:10.14658/pupj-drna-2022-3-4
04_chen.pdf (1.3 MB). (2022). Two classes of linearly implicit numerical methods for stiff problems: analysis and MATLAB software. Dolomites Research Notes on Approximation, 15(2), 66-80. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-6
06_DRNA_SA2022.pdf (470.3 KB). (2022). Two positive solutions for a nonlinear Robin problem involving the discrete p−Laplacian. Dolomites Research Notes on Approximation, 15(5), 1-7. presented at the 12/2022. doi:10.14658/pupj-drna-2022-5-1
AMOROSO_et_al.pdf (241.24 KB). (2021). Computation of the Bell-Laplace transforms. Dolomites Research Notes on Approximation, 14(1), 74-91. presented at the 10-2021. doi:10.14658/pupj-drna-2021-1-7
CaratelliCesaranoRicci_2021_BLT.pdf (2.21 MB). (2021). Computation of the Bell-Laplace transforms. Dolomites Research Notes on Approximation, 14(1), 74-91. presented at the 10-2021. doi:10.14658/pupj-drna-2021-1-7
CaratelliCesaranoRicci_2021_BLT.pdf (2.21 MB). (2021). Estimates for polynomial norms on Banach spaces. Dolomites Research Notes on Approximation, 14(3), 40-52. presented at the 12/2021. doi:10.14658/pupj-drna-2021-3-5
Chatzakou_Sarantopoulos_MB_2021.pdf.pdf (338.29 KB). (2021). Multivariate Approximation: Theory and Applications 2020. Dolomites Research Notes on Approximation, 14(2), 1-2. presented at the 04/2021. Retrieved from https://drna.padovauniversitypress.it/2021/2/1
PrefaceMATA2020.pdf (352.38 KB). (2021). A Reliable Algorithm for solution of Higher Dimensional Nonlinear (1 + 1) and (2 + 1) Dimensional Volterra-Fredholm Integral Equations. Dolomites Research Notes on Approximation, 14(2), 18-25. presented at the 04/2021. doi:10.14658/pupj-drna-2021-2-4
CesaranoetalMATA2020.pdf (220.94 KB). (2021). Two positive solutions for a nonlinear parameter-depending algebraic system. Dolomites Research Notes on Approximation, 14(2), 10-17. presented at the 04/2021. doi:10.14658/pupj-drna-2021-2-3
CanditoDaguiLivreaMATA2020.pdf (144.55 KB). (2020). A solution of the problem of inverse approximation for the sampling Kantorovich operators in case of Lipschitz functions. Dolomites Research Notes on Approximation, 13(1), 30-35. presented at the 03/2019. doi:10.14658/PUPJ-DRNA-2020-1-4
CantariniCostarelliVinti_2020_SPI.pdf (183.69 KB). (2020). A solution of the problem of inverse approximation for the sampling Kantorovich operators in case of Lipschitz functions. Dolomites Research Notes on Approximation, 13(1), 30-35. presented at the 03/2019. doi:10.14658/PUPJ-DRNA-2020-1-4
CantariniCostarelliVinti_2020_SPI.pdf (183.69 KB)