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Korovkin-type approximation of set-valued functions with convex
graphs

Michele Campiti a

Abstract

Different Korovkin type results have been obtained in cones of set-valued continuous functions. Here we
show that if we consider the subcone of set-valued continuous functions having a convex graph, then we
can consider a Korovkin system which contains only affine functions. In this way we give a non trivial
example where the number of functions to be used in a Korovkin system can be reduced.

1 Introduction and notation
The problem of considering the smallest number of functions in a Korovkin system has been considered for a long time (see e.g.
[1]) and it is well-known that in many cases this number cannot be reduced.

For example, the classical Korovkin theorem states the set K := {1, id, id2} is a Korovkin system in C[0, 1], that is we have the
strong convergence of a sequence of positive linear operators (Ln)n≥1 to the identity operator on C([0, 1]) if and only if

lim
n→+∞

Ln(1) = 1 , lim
n→+∞

Ln(id) = id , lim
n→+∞

Ln(id
2) = id2

uniformly on [0, 1]. Many different examples of Korovkin systems have been obtained and it is well known that the number of
their elements cannot be less than three.

Many extensions of the Korovkin system have been obtained in more general settings (see. e.g., [1, 2]) and also for cones of
set-valued continuous functions, obtained starting from the pioneristic work by Keimel and Roth [13, 14], and continued until
today [3, 12].

In many cases it has been shown that a Korovkin system must have a minimum number of elements which cannot be reduced.
However, we can ask if it is enough to consider less elements in a Korovkin system by requiring the convergence property only on
a subspace rather than on the whole space.

This question has only trivial answers for example in the space C([0,1]); if we consider only the two functions 1, id and a
positive linear operator L : C([0, 1])→ C([0, 1]) satisfying L(1) = 1 and L(id) = id, then it is not possible to predict its value at
any non linear function.

On the contrary, in the context of cones of set-valued continuous functions, we may have some non trivial results and our aim
is to show that even in the real case we can obtain some interesting results.

First, we shall denote by K(R) the cone of all non-empty compact convex subsets (i.e., non-empty closed bounded intervals)
of R endowed with the natural addition and multiplication by positive scalars; in K(R) it is defined the Hausdorff distance

dH(A, B) :=max

�

sup
x∈A

inf
y∈B
|x − y|, sup

y∈B
inf
x∈A
|x − y|
�

.

Moreover, if [a, b] is a real interval, we recall that a function F ∈ F([a, b],K(R)) is Hausdorff continuous if it is continuous with
respect to the Hausdorff distance on K(R) at each x0 ∈ [a, b], i.e., for every ϵ > 0 there exists δ > 0 such that dH(F(x), F(x0)< ϵ
(or equivalently F(x) ⊂ F(x0) + ϵ · [−1, 1] and F(x0) ⊂ F(x) + ϵ · [−1, 1]) for every x ∈ [a, b] satisfying ∥x − x0∥< δ.

We shall denote by C([a, b],K(R)) the cone of all set-valued Hausdorff continuous functions defined on [a, b] and with values
in K(R).

The cone C([a, b],K(R)) is naturally ordered by inclusion, that is

F ≤ G ⇔ ∀x ∈ [a, b] : F(x) ⊂ G(x) ,

whenever F, G ∈ C([a, b],K(Rd)).
Let C be a subcone of C([a, b],K(Rd)). An operator L : C→ C([a, b],K(Rd)) is linear if preserves addition and multiplication

by positive scalars and is monotone (or positive) if preserves the order relation on C([a, b],K(Rd)).
Now, we can recall the notion of Korovkin system.
If C is a subcone of C([a, b],K(Rd)), a Korovkin system for the identity operator in C with respect to linear positive operators

is a subset M of C which satisfies the following condition:
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• If (Ln)n≥1 is a sequence of positive linear operators from C into C([a, b],K(R)) satisfying

lim
n→+∞

Ln(H) = H i.e., lim
n→+∞

dH(Ln(H), H) = 0 for every H ∈M ,

then we also have
lim

n→+∞
Ln(F) = F for every F ∈ C .

First, we recall the following Korovkin type result which is contained in [4, Theorem 2.4 and Corollary 2.5] where it has been
established even in the more general case where the limit is not the identity operator.

Theorem 1.1. ([4, Theorem 2.4]) Let H be a subset of C([a, b],K(R)) such that, for every F ∈ C([a, b],K(R)), x0 ∈ [a, b] and
ϵ > 0, there exists H ∈H satisfying the following conditions

F ≤ H, H(x0) ⊂ F(x0) + ϵ · [−1, 1] . (1)

Then H is a Korovkin system for the identity operator in C([a, b],K(R)) with respect to linear positive operators.

As observed in [4, Remark 2.6], if H contains the constant set-valued functions, then condition (1) can be weakened with the
following condition

F ≤ H + ϵ · [−1, 1], H(x0) ⊂ F(x0) + ϵ · [−1,1] . (2)

As a consequence of the above result, many examples of Korovkin systems have been obtained in [9]-[11].
We limit ourselves to state only the following consequence (see [11, Theorems 2.5] and [11, Corollary 2.1]) since it will be

useful in the next section in order to state our main results.

Corollary 1.2. Let H be a subset of C([a, b],K(R)) which contains the functions

x 7→ K +λ (x − x0)
2 · [−1, 1] ,

whenever K ∈ K(R), x0 ∈ [a, b] and λ≥ 0 (in particular H contains the constant functions).
Then H is a Korovkin system in C([a, b],K(R)) for the identity operator with respect to linear positive operators .

If X = [0,1], we obtain that the subcone H of C([0,1],K(R)) containing the functions

x 7→ (λ+µ(x − x0)
2) · [−1, 1], x0 ∈ [0, 1] ,

for every x0 ∈ [0, 1], is a Korovkin system in C([0, 1],K(R)) for the identity operator with respect to linear positive operators.
In the next section, we shall consider Korovkin systems for suitable subcones of C([a, b],K(R)).

2 The main result
We shall consider the subcone G of C([a, b],K(R)) consisting of all functions in F ∈ C([a, b],K(R)) having a convex graph in R2,
i.e.

G := {F ∈ C([a, b],K(R)) | x , y ∈ [a, b], u ∈ F(x), v ∈ F(y), t ∈ [0, 1]
⇒ tu+ (1− t)v ∈ F(t x + (1− t)y)} .

In the case of a single-valued real continuous function ϕ : [a, b]→ R, the graph is convex if and only if ϕ is an affine function,
while for set-valued functions we have a more general situation and even non affine functions may have a convex graph.

For example, the set-valued continuous function F : [0,1]→ K(R) defined by setting

F(x) = x(1− x) · [−1,1]

has a convex graph but it is not affine.
If F ∈ C([a, b],K(R)) has a convex graph, then we can consider the functions ϕF ,ψF : [a, b]→ R defined by setting, for

every x ∈ [a, b],
ϕF (x) :=min F(x) , ψF (x) =max F(x) .

Since F is Hausdorff continuous, we have ϕF ,ψF ∈ C([a, b]) and further ϕF is a convex function and ψF is a concave function.
It is well-known that ϕF and ψF have finite left and right derivatives ϕF

′
−(x0) ≤ ϕF

′
+(x0) and ψF

′
−(x0) ≥ ψF

′
+(x0) at every

x0 ∈]a, b[, and admit a derivative at the endpoints which may be not finite.
At this point we can state our main result. In order to obtain a Korovkin system in G, we don’t need to consider all the

set-valued functions in Corollary 1.2, but only the set-valued functions Hh,k : [a, b]→ K(R) defined by setting

Hh,k(x) := [h(x), k(x)] , x ∈ [a, b] , (3)

where h(x) := p1 x + q1, k(x) := p2 x + q2 and h(x)≤ k(x) for every x ∈ [a, b].
These functions play the role of affine functions for single-valued real functions.

Theorem 2.1. Let M be a subset of G which contains the functions Hh,k defined in (3), whenever h(x) := p1 x +q1, k(x) := p2 x +q2
and h(x)≤ k(x) for every x ∈ [a, b].

Then M is a Korovkin system in G for the identity operator with respect to linear positive operators.
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Proof. Let F : [a, b]→ K(R) be a Hausdorff continuous function with a convex graph. Then, we can consider the continuous
functions

ϕF (x) :=min F(x) , ψF (x) =max F(x) , x ∈ [a, b] .

Moreover ϕF is convex, ψF is concave and both have finite left and right derivatives at each x0 ∈]a, b[ and admit a derivative at
the endpoints which may be not finite.

Let ϵ > 0 and x0 ∈ [a, b]. If x0 ∈]a, b[, we can consider p1 ∈ [ϕF
′
−(x0),ϕF

′
+(x0)] and p2 ∈ [ψF

′
+(x0),ψF

′
−(x0)] and the

tangents h(x) := p1(x − x0) +ϕ(x0) to the graph of ϕ at x0 and k(x) := p2(x − x0) +ψ(x0) to the graph of ψ at x0.
Now, consider the function Hh,k ∈M (see (3)). Since ϕ is convex and ψ is concave, we necessarily have F ≤ Hh,k. Moreover

we obviously have Hh,k(x0) = [ϕ(x0),ψ(x0)] = F(x0) ⊂ F(x0) + ϵ · [−1,1] and therefore in this case condition (1) of Theorem
1.1 is satisfied.

Consider now x0 = a. If the derivatives ϕF
′(a) and ψF

′(a) are both finite we can consider the tangents at a of ϕF and ψF
and we can proceed as in the case x0 ∈]a, b[.

If ϕF
′(a) = −∞ we can consider δ > 0 such that |ϕF (x)−ϕF (a)| ≤ ϵ/2 for every x ∈ [a, a+δ]. Define the affine function

h(x) := p1(x − a) +ϕF (a)− ϵ/2 with p1 ∈ [ϕF
′
−(a + δ),ϕF

′
+(a + δ)]. Then h(x) ≤ ϕF (x) for every x ∈ [a, b]. Indeed this is

obvious in the interval [a, a+δ] and is ensured by the fact that the function t(x) := p1(x − a−δ) +ϕF (a+δ) satisfies t ≤ ϕF
(for the same argument used before in the case x0 ∈]a, b[) and h(x)≤ t(x)− ϵ/2.

Now, consider ψF
′(a); if ψF

′(a)< +∞ we set p2 :=ψF
′(a) and define k(x) := p2(x − a) +ψ(a). If ψF

′(a) = +∞ we can
consider σ > 0 such that |ψF (x)−ψF (a)| ≤ ϵ/2 for every x ∈ [a, a+σ]. In this case we define k(x) := p2(x − a) +ψF (a) + ϵ/2
with p2 ∈ [ψF

′
+(a+σ),ψF

′
−(a+σ)]. Then k(x) ≥ψF (x) for every x ∈ [a, b]. This is obvious in the interval [a, a+σ] and is

ensured by the fact that the function s(x) := p2(x − a−σ) +ψF (a+σ) satisfies s ≥ψF and k(x)≥ t(x) + ϵ/2.
Now, consider the function Hh,k ∈ M; as above, we necessarily have F ≤ Hh,k and Hh,k(a) = [ϕ(a),ψ(a)] = F(a) ⊂

F(a) + ϵ · [−1,1] and therefore also in this case condition (1) of Theorem 1.1 is satisfied.
Obviously the same reasoning can be applied to the point b and this completes the proof.

The above result is a general Korovkin-type result which allows us to ensure the convergence of an arbitrary sequence of
positive linear operators to the identity operator on the set-valued functions having a convex graph.

Now, we consider the same question for a class of set-valued operators which are more general than linear positive operators
and we obtain a deeper result which holds also in a multi-dimensional setting.

Namely, a continuous monotone linear operator

L : C([a, b],K(Rd))→ C([a, b],K(Rd))

is said to be convexity monotone if it satisfies the condition

ϕ ∈ co(ϕ1,ϕ2) ⇒ L({ϕ}) ⊂ co(L({ϕ1}), L({ϕ2})) (4)

for every ϕ1,ϕ2 ∈ C([a, b],Rd), where co(ϕ1,ϕ2) : [a, b]→ K(Rd) is the set-valued (continuous) function defined by setting, for
every x ∈ [a, b],

co(ϕ1,ϕ2)(x) := co(ϕ1(x),ϕ2(x)) ,

and co(ϕ1(x),ϕ2(x)) denotes the convex hull of {ϕ1(x),ϕ2(x)}. Moreover {ϕ} is the set-valued function defined by setting
{ϕ}(x) := {ϕ(x)} for every x ∈ [a, b].

Convexity monotone operators have been studied in details in [9]-[11] and we refer also to [5, 6, 7] for other interesting
properties.

If C is a subcone of C([a, b],K(Rd)), a subset M of C is called a Korovkin system for the identity operator in C with respect to
convexity monotone operators if for every sequence (Ln)n≥1 of convexity monotone linear operators from C into itself satisfying
limn→+∞ Ln(H) = H for every H ∈M, we also have limn→+∞ Ln(F) = F for every F ∈ C.

Now, consider the subcone of all continuous set-valued functions having a compact convex graph in Rd+1:

G := {F ∈ C([a, b],K(Rd)) | x , y ∈ [a, b], u ∈ F(x), v ∈ F(y), t ∈ [0,1]
⇒ tu+ (1− t)v ∈ F(t x + (1− t)y)} .

For the class of convexity monotone operators, we have the following result. We denote by A([a, b],Rd) the subspace of
C([a, b],Rd) consisting of all affine functions on [a, b].

Theorem 2.2. Let M be a subset of G the constant function 1 ·B, where B denotes the closed unit ball in Rd , and the functions {h}
for every h ∈ A([a, b],Rd).

Then M is a Korovkin system in G for the identity operator with respect to convexity monotone operators.

Proof. Let (Ln)n≥1 be a sequence of convexity monotone linear operators converging to H for every H ∈M.
First, we show that if ϕ1, . . . ,ϕm ∈ A([a, b],Rd), then

lim
n→+∞

Ln(co(ϕ1, . . . ,ϕm)) = co(ϕ1, . . . ,ϕm) .

Let ϵ > 0; since (Ln(B))n≥1 converges to B we can find M ≥ 1 such that

Ln(1 ·B) ⊂ M ·B .
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For every x ∈ [a, b], the set co(ϕ1(x), . . . ,ϕm(x)) is compact and therefore there exist λ(s) := (λ1(s), . . . ,λm(s)), s = 1, . . . , p,
such that λ j(s)≥ 0 for every j = 1, . . . , m and

∑p
j=1 λ j(s) = 1 for every s = 1, . . . , p and further

co(ϕ1(x), . . . ,ϕm(x)) ⊂
p
⋃

s=1

�

m
∑

j=1

λ j(s){ϕ j(x)}+
ϵ

2M
·B

�

.

Since [a, b] is compact the preceding formula can be extended to every x ∈ [a, b].
Since (Ln({ϕ}))n≥1 converges to {ϕ} for every ϕ ∈ A([a, b],Rd), the sequences

�

∑m
j=1 λ j(s)Ln({ϕ j})

�

n≥1
converge to

∑m
j=1 λ j(s)L({ϕ j}) for every s = 1, . . . , p. Hence we can find ν≥ 1 such that, for every n≥ ν and s = 1, . . . , p,

m
∑

j=1

λ j(s){ϕ j} ⊂
m
∑

j=1

λ j(s)Ln({ϕ j}) +
ϵ

2
·B ,

m
∑

j=1

λ j(s)Ln({ϕ j}) ⊂
m
∑

j=1

λ j(s){ϕ j}+
ϵ

2
·B .

It follows, for every n≥ ν,

co(ϕ1, . . . ,ϕm) ⊂
p
⋃

s=1

�

m
∑

j=1

λ j(s){ϕ j}+
ϵ

2M
·B

�

⊂
p
⋃

s=1

�

m
∑

j=1

λ j(s){ϕ j}+
ϵ

2
·B

�

⊂
p
⋃

s=1

�

m
∑

j=1

λ j(s)Ln({ϕ j}) + ϵ ·B

�

⊂ Ln(co(ϕ1, . . . ,ϕm)) + ϵ ·B ,

and conversely

Ln(co(ϕ1, . . . ,ϕm)) ⊂
p
⋃

s=1

�

m
∑

j=1

λ j(s)Ln({ϕ j}) + Ln

� ϵ

2M
·B
�

�

⊂
p
⋃

s=1

�

m
∑

j=1

λ j(s)Ln({ϕ j}) +
ϵ

2
·B

�

⊂
p
⋃

s=1

�

m
∑

j=1

λ j(s){ϕ j}+ ϵ ·B

�

⊂ co(ϕ1, . . . ,ϕm) + ϵ ·B ,

Hence the net (Ln(co(ϕ1, . . . ,ϕm)))n≥1 converges to co(ϕ1, . . . ,ϕm)).
Now, let F ∈ G, x0 ∈ [a, b] and ϵ > 0. For every y ∈ ∂ F(x0) (∂ F(x0) denotes the boundary of F(x0)) it is possible to

find ϕy ∈ A([a, b],K(Rd)) such that ϕ(x) ∩ F(x) = ; for every x ∈ [a, b] and further ∥ϕy(x0) − y∥ < ϵ. In this way we
obtain a family (ϕy)y∈∂ F(x0) of elements of A([a, b],K(Rd)) such that F ≤ co(ϕy | y ∈ ∂ F(x0)) and co(ϕy(x0) | y ∈ ∂ F(x0)) ⊂
F(x0) + ϵ ·B. The compactness of ∂ F(x0) yields a finite number ϕ1, . . . ,ϕm ∈ A([a, b],K(Rd)) such that F ≤ co(ϕ1, . . . ,ϕm) and
co(ϕ1, . . .ϕm)(x0) ⊂ F(x0) + ϵ ·B.

At this point we observe that the set

{co(ϕ1, . . . ,ϕm) | ϕ1, . . . ,ϕm ∈ A([a, b],Rn)}

satisfies the assumptions of [11, Theorem 2.3] (see also [4, Theorem 2.4]). Hence we can proceed just as in the proof of [4,
Theorem 2.4] in order to show the convergence of (Ln(F))n≥1 to F and this completes the proof.
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