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A Reliable Algorithm for solution of Higher Dimensional
Nonlinear (1+ 1) and (2+ 1) Dimensional Volterra-Fredholm

Integral Equations

Praveen Agarwal a,b,c · Sumbal Ahsan d · Muhammad Akbar e · Rashid Nawaz f · Clemente Cesarano g

Abstract

An approach to approximate solution of higher dimensional Volterra-Fredholm integral equations (VFIE)
is presented in this paper. A well-established semi analytical method is extended to solution of VFIE for
the first time, called Optimal Homotopy Asymptotic Method (OHAM). The efficiency and effectiveness of
the proposed technique is tested upon (1+ 1) and (2+ 1) dimensional VFIE. Results obtained through
OHAM are compared with multi quadric radial basis function method,radial basis function method,
modified block-plus function method, Bernoulli collocation method, efficient pseudo spectral scheme,
three dimensional block-plus function methods and 3D triangular function. The comparison clearly
shows the effectiveness and reliability of the presented technique over these methods. Moreover, the use
of OHAM is simple and straight forward.
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1 Introduction
Differential and integral equations are observed in modeling various physical phenomena. The use of differential and integral
equations in different fields of science and engineering attract the focus of the researchers to find its solutions, but exact solution
of all problems is difficult to find, because of high nonlinearity. Therefore, researchers implement different numerical and
approximate techniques for its approximate solutions. Almasieh. et al. applied multiquadric radial basis functions for solving 2
D VFIE [1] . Hafezet al. applied Bernoulli collocation method [2].Abdelkawy et al. obtained the approximate solution of 3D
integral equations [3]. Mirzaee et al. introduced 3D triangular functions [4] andblock-pulse functions method for solution of 3D
nonlinear mixed VFIE [5]. See further [6, 9]. Marinca et. al. [10, 13] introduced OHAM for the solution of differential equations.
Different researchers successfully applied the proposed technique to different problems in science and engineering [14, 18]. In
the present work, the proposed technique is extended to higher dimensional VFIE of the form:

u(z, t, i) = h(z, t, i) +

∫ z

a

∫ t

b

∫ i

c

k1(z, t, i, r, s, v)M[u(r, s, v)]drdsdv +

∫ e

m

∫ w

n

∫ τ

o

k2(z, t, i, r, s, v)M[u(r, s, v)]drdsdv (1)

u(z, t, i) = h(z, t, i) +

∫ e

m

∫ w

n

∫ τ

o

(z, t, i, r, s, v)M[u(r, s, v)]drdsdv (2)

Where h(z,t)and k(z,t,r,s) are the known analytical functions,a, b, c, m, n, o&w are constants and z, t, i&τ are variables,M
represent linear and nonlinear operator and u(z,t,i) is the solution to be determine. This paper is organized as follow. Section
1st is the introduction and some review of literature, basic idea of OHAM is in section 2. Section 3 represents some numerical
examples. Section 4 is the results and discussions while section 5 is conclusions.

2 Basic Idea of OHAM
Taking a general integral equation of the form:

u(z, t, i) = h(z, t, i) +

∫ z

a

∫ t

b

∫ i

c

k(z, t, i, r, s, v)M[u(r, s, v)]drdsdv (3)
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Construct an optimal homotopy υ(z, t;ρ) : ξ× [0,1] −→ R as

(1−ρ){L(u(z, t, i;ρ))− h(z, t, i)}=H(ρ){L(u(z, t, i;ρ))− h(z, t, i)−δ(u)}, (4)

where L(u(z,t,i;ρ))denotes linear operator,δ(u) represent the integral operator and u(z,t,i)is the solution of the given equation to
be determined.where ρ ∈ [0, 1],H(ρ) =

∑

m≥1 cmρ
m for all ρ 6= 0 is an auxiliary function, if ρ = 0 then H(0) = 0 and cm are the

auxiliary constants.Expend u(z,t;ρ) about ρ by using Taylorâs series expansion, one can get:

υ(z, t, i;ρ) = u0(z, t, i) +
∑

m≥1

um(z, t, i)ρm (5)

at ρ=1, the series in Equation (5) , becomes

ũ(z, t, i) = u0(z, t, i) +
∑

m≥1

um(z, t, i) (6)

Using Equation (5), and compare the coefficients of like power of ρ in Equation (4), one can get the following series of the
problems:

ρ0 : u0(z, t, i)− h(z, t, i) = 0 (7)

ρ1 : u1(z, t, i) = c1δ(u0) + (1+ c1)u0(z, t, i) = 0 (8)

ρ2 : u2(z, t, i) + c1δ(u1) + c2δ(u0) + c2(h(z, t, i)− u0(z, t, i))− (1+ c1)u1(z, t, i) = 0 (9)

ρ3 : u3(z, t, i) + c3δ(u0) + c2δ(u1) + c1δ(u2) + c3(h(z, t, i)− u0(z, t, i))− (1+ c1)u2(z, t, i)− c1u1(z, t, i) = 0 (10)

ρn : un(z, t, i) +
n−1
∑

j=1

c jδ(un− j) + cn(h(z, t, i)− u0(z, t, i))− (1+ c1)un−1(z, t, i)−
n−1
∑

j=2

c jun− j(z, t, i) (11)

Using these solutions in Eq. (6) , one can get the approximate solution, containing auxiliary constants. One can obtain the values
of these constants using collocation method and method of least square. We define the residual by putting the approximate
solution Eq.(6) in Eq.(3) . To find values of the constants, cm , m= 1,2, .......n ,we define

J(cm) =

∫ b

a

∫ d

c

∫ n

e

R2(z, t, i, cm)d tdzdi (12)

and then

∂ J1

∂ c1
= 0,

∂ J2

∂ c2
= 0,

∂ Jn

∂ cn
= 0 (13)

From system in Eq (13), one can easily obtain the values of constants. In collocation method,we take distinct points τi ∈ (a, b), i =
1, 2, ....m in domain of the problem. The choice of selection of τi ∈ (a, b), i = 1, 2, ....m is independent. Inserting τi into residual
equation and put it equal to zero:

ℜ(τi , ci) = 0, i = 1,2, 3, ....m (14)

Solve system in Eq.(14) for constants

3 Illustrative Problems
In this section, some numerical problems are presented to show the efficiency and reliability of OHAM
Problem 3.1. consider 2D VIE [1]:

u(z, t) = etz2 −
2z3 t2

3
+

∫ z

0

∫ 1

−1

t2e−rφ(r, s)drds, 0≤ z ≤ 1, (15)

with the exact solution u(z, t) = etz2 .
Using OHAM, discussed in pervious section. On can get different order problems and their solutions are given below:
Zero order problem and its solution is:

u0(z, t) +
−3etz2 + 2z3 t2

3
= 0 (16)
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u0(z, t) +
3etz2 − 2z3 t2

3
= 0 (17)

1st order problem and its solution:

etz2 −
2z3 t2

3
+ etz2c1 −

2
3

z3 t2c1 + t2

�

∫ z

0

∫ 1

−1

e−su0(r, s)dsdr

�

c1 − u0(z, t)− c1uo(z, t) + u1(z, t) = 0 (18)

u1(z, t) =
z3(−4e+ (−5+ e2)z)t2c1

6e
(19)

By adding zero order and 1st order solution, we get 1st order OHAM solution

u(z, t) =
etz2 − 2z3 t2

3
+

z3(−4e+ (−5+ e2)z)t2c1

6e
(20)

Using method of least square one can get the value of constant
c1 = −1.248519006.
With this constant the approximate solution Eq. (20), becomes

u(z, t)≈
etz2 − 2z3 t2

3
− 0.0765507z3(−4e+ (−5+ e2)z)t2 (21)

Table 1: comparison of absolute errors (AE) of OHAM and RBFâS Method [1]

(z,t) OHAM EXACT AE in [1] (N = 5) AE of 1st orderOHAM
(0,0) 0 0 1.6379×10−6 2.4657×10−6 0

(0.1,0.1) 0.0111 0.0111 7.6810×10−5 1.4696×10−5 1.4739×10−6

(0.2,0.2) 0.0489 0.0489 4.1947×10−4 3.3702×10−4 4.1313×10−5

(0.3,0.3) 0.1215 0.1215 2.7146×10−3 2.4510×10−3 2.6928×10−4

0.4,0.4) 0.2387 0.2387 9.9376×10−3 1.0059×10−2 9.4746×10−4

(0.5,0.5) 0.4122 0.4122 2.9926×10−2 3.0543×10−2 2.3199×10−3

(0.6,0.6) 0.6560 0.6560 7.5715×10−2 7.5897×10−2 8.5612×10−3

(0.7,0.7) 0.9867 0.9867 1.6434×10−1 1.6356×10−1 4.3506×10−3

(0.8,0.8) 1.4244 1.4244 3.1791×10−1 3.1748×10−1 6.3296×10−3

(0.9,0.9) 1.9922 1.9922 5.6869×10−1 5.6961×10−1 6.3479×10−3

Problem 3.2. Taking (1+ 1)-dimensional nonlinear VFIE [1, 2]:

u(t, z) = h(z, t)−
∫ z

0

∫ 1

0

t2e−4s(u(r, s))2drds0≤ z, t ≤ 1 (22)

where h(z, t) =
�

e2tz2 − 1
512 e−4z(−1+ e4)

�

−3+ 3e4z − 4z (3+ 2z + (3+ 4z(1+ z)))
�

t2
�

, and the exact solution u(z, t) = z2e2t

apply the proposed method, one can obtain the following solution and auxiliary constant.
Auxiliary constant
c1 = −1.0002912.
and approximate solution

u(z, t)≈ e2tz2 − 1
512 e−4z(−1+ e4)

�

−3+ 3e4z − 4z (3+ 2z + (3+ 4z(1+ z)))
�

t2 + 2.922386× 10−10e−12z

(e12z(1078756769− 3805380e2 + 2851e4)− 34992e8z(31191+ 9e4 − 480e2(1+ 4z + 8z2)+ 640z(195+ 2z(195+ 256z(1+ z))))+
2187(−1+ e)e4z(1+ e)(−5661+ 3e2(93+ 8z(45+ 4z(21+ 8z(3+ 2z)))))− 8z(5805+ 4z(5877+ 8z(1651+ 2z(1177+ 160z(7+
4z))))))− 16(−1+ e4)(18631+ 24z(6035+ 481+ (481+ z(1195+ 35(709+ 12z(77+ z(73+ 6z(8+ 3z)))))))))t2

Problem 3.3.Consider(2+ 1)-dimensional linear VFIE [3]:

u(z, t, i) = h(z, t, i) +
1
2

∫ z

0

∫ 1

0

∫ 1

0

(t i + rv)u(r, s, v)dvdsdr, 0≤ z, t, i ≤ 1 (23)

where h(z, t, i) = t4

72 (4i(−1+ cos(1))− 3(sin(1)− cos(1))) + z2 t2sin(i) with close form solution u(z, t, i) = z2 t2sin(i) By apply
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Figure 1: Residual Plot of problem 1.

Table 2: Absolute errors (AE) of OHAM, MQâs [1] and BC Method[2]

(z,t) OHAM EXACT AE [1] (c = 0.6) AE [2]] OHAM(AE)
(0,0) 0 0 6.4387×10−3 0 0

(0.1,0.1) 0.0121 0.0121 6.9441×10−3 1.0555×10−4 4.3680×10−15

(0.2,0.2) 0.0597 0.0597 4.3133×10−2 6.7607×10−4 2.5081×10−8

(0.3,0.3) 0.1640 0.1640 9.8257×10−2 1.5111×10−3 8.6414×10−7

0.4,0.4) 0.3561 0.3561 1.6816×10−1 1.6686×10−3 8.5050×10−6

(0.5,0.5) 0.6795 0.6796 2.6325×10−1 1.3417×10−5 4.3547×10−5

(0.6,0.6) 1.1951 1.1952 3.8837×10−1 4.0520×10−3 3.8811×10−4

(0.7,0.7) 1.9867 1.9871 5.3340×10−1 9.4556×10−3 3.8811×10−4

(0.8,0.8) 3.1691 3.1699 6.9169×10−1 1.3304×10−2 2.8416×10−4

(0.9,0.9) 4.8987 4.09002 8.8598×10−1 1.1352×10−2 1.5441×10−3

Figure 2: Residual Plot for problem 2.
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OHAM one can obtain the following approximate solutions. Values of auxiliary constants is obtained by using collocation method:
c1 = −1.0459773, c2 = −0.0037576, c3 = −0.0002483.
With these constants the 3rd order OHAM solution

u(z, t, i)≈ 1
14929920 t2(−13.41521(−17cos(1)360t2(cos(1)− sin(1)) + 9sin(1) + 12z(2+ 40t2(−1+ cos(1)− 5cos(1) + 3sin(1))) +

236.31880(360− 759cos(1) + 8640t2(cos(1)− sin(1)) + 399sin(1) + 4i(268+ 2880t2(−1+ cos(1))− 673cos(1) + 405sin(1)))−
1.14437(36520− 76363cos(1) + 622080t2(cos(1)− sin(1)) + 39843sin(1) + 12i(8992+ 69120t2(−1 = cos(1))− 22687cos(1) +
13695sin(1)))−150.62073(36(8−17cos(1)+360t2(cos(1)− sin(1))+9sin(1)+12i(2+40t2(−1+ cos(1))−5cos(1)+3cos(1)+
3sin(1)))− 0.00376(360− 759cos(1) + 8640t2(cos(1)− sin(1)) = 399sin(1) + 4i(268+ 2880t2(−1+ cos(1)− 673cccccos(1) =
405sin(1)))) + 13824(−0.00776+ 15(t2(−4i + (3+ 4i)cos(1)− 3sin(1) + 72z2sin(1))))

Table 3: absolute errors (AE) of OHAM w.r.t different orders

(z,t,i) OHAM EXACT 1s tOrderAE 2ndOrderAE 3rdOrderAE
( 1

2 , 1
2 , 1

2 ) 2.9964×10−2 2.9964×10−2 38403×10−4 2.8749×10−7 3.4695×10−18

( 1
4 , 1

4 , 1
4 ) 96642×10−4 96642×10−4 87051×10−5 1.4024×10−7 1.0842×10−19

( 1
16 , 1

16 , 1
16 ) 9.5305×10−7 9.5305×10−7 3.8632×10−6 1.1395×10−8 3.2822×10−21

( 1
32 , 1

32 , 1
32 ) 2.9798×10−8 2.9798×10−8 8.8463×10−7 2.9507×10−9 6.8160×10−22

( 1
64 , 1

64 , 1
64 ) 9.3129×10−10 9.3129×10−10 2.1071×10−7 7.5027×10−10 3.5424×10−18

Table 4: comparison of OHAM with EPS Method [3]

(z,t,i) OHAM EXACT EPS method [3] 3rdOrderOHAM
( 1

2 , 1
2 , 1

2 ) 2.9964×10−2 2.9964×10−2 1.2×10−11 3.4695×10−18

( 1
4 , 1

4 , 1
4 ) 96642×10−4 96642×10−4 6.1×10−8 1.0842×10−19

( 1
16 , 1

16 , 1
16 ) 9.5305×10−7 9.5305×10−7 2.5×10−10 3.2822×10−21

( 1
32 , 1

32 , 1
32 ) 2.9798×10−8 2.9798×10−8 1.1×10−11 6.8160×10−22

( 1
64 , 1

64 , 1
64 ) 9.3129×10−10 9.3129×10−10 4.0×10−13 3.5424×10−18

Figure 3: Residual Plot taking i = 1/16 of problem 3.

Problem 3.4. consider (2+ 1)-dimensional linear mixed VFIE[4]:

u(z, t, i) = h(z, t, i) +
1

20

∫ z

0

∫ t

0

∫ i

0

iu(r, s, v)dvdsdr +
1

10

∫ 1

0

∫ 1

0

∫ 1

0

(z + r)u(r, s, v)dvdsdr, 0≤ z, t, i ≤ 1 (24)

where h(z,t,i) is selected in such a way that solution becomes h(z, t, i) = sin(t + i), apply the proposed method we get the
following solution:
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Optimum value of auxiliary constant determined by using method of least square:
c1 = −1.1157439.
with this constant the solution becomes:

u(z, t, i)≈ − 1
5 (1+2z)sin( 1

2 )
2sin(1)+ 1

20 zi(sin(t)+sin(i)−sin(t+i))+sin(t+i)+0.0002324(3z(−6+zi(2+i2)+14cos(1)−4cos(2))-
3z2i(2+ i2)cos(t)− 4(3− 7cos(1) + 2cos(2) + 106sin(1)− 51sin(2)))(+6z(−144sin(1) + 70sin(2) + i(−z(1+ t i)cos(i) + zcos(t +
i)− 8(1+ z)tzsin( 1

2 )
2sin(1) + 40sin(t) + 40sin(i) + z(t − i) + (−40+ t i)sin(t + i))))

Table 5: Absolute errors (AE) of 1st order OHAM with MBPFs Method [4]

(z,t,i) OHAM EXACT AE in [4] (m= 8) (k = 2) AE of OHAM
( 1

2 , 1
2 , 1

2 ) 0.8414 0.8415 2.9263×10−2 3.2343×10−5

( 1
4 , 1

4 , 1
4 ) 0.4792 0.4794 5.2143×10−2 2.1138×10−4

( 1
8 , 1

8 , 1
8 ) 0.3660 0.3663 5.9035×10−2 2.9095×10−4

( 1
16 , 1

16 , 1
16 ) 0.1243 0.1247 6.1123 (×10−2 3.3020×10−4

( 1
32 , 1

32 , 1
32 ) 0.0621 0.0625 3.1017 (×10−2 3.4921×10−4

( 1
64 , 1

64 , 1
64 ) 0.0308 0.0312 6.2231×10−2 3.5870×10−4

Figure 4: Residual Plot taking i = 1/8 of problem 4.

Problem 3.5.Consider(2+ 1)-dimensional linear mixed VFIE[4, 5]:

u(z, t, i) =

�

z2 t i +
11z6(3+ 4t2)i

5760

�

+
1
4

∫ t

0

∫ 1

0

∫ 1

0

(z + v)(t2 + r)is(u(r, s, v))2drdsdv, 0≤ z, t, i ≤ 1, (25)

with the exact solution u(z, t, i) = z2 t i,
Apply the proposed methodone can get the following solution:
Optimum value of auxiliary constant determined by using method of least square:
c1 = −1.0122278.
Approximate solution

u(z, t, i)≈ z2 t i − 11z6(3+4t2)i
5760 + 3.4574495× 10−11z6(55910400− 885248z4 + 4345z8)(3+ 4t2)i.

4 Result and Discussion:
In this work, reliable algorithm of OHAM is successfully applied to VFIE of higher dimensional. Table 3 contain results of different
order solution of OHAM for Problem 3.Tables 1,2,4,5and6 show comparison of OHAM solution with other method which
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Table 6: Absolute errors (AE) of 1st order OHAM with other method [4, 5]

(z,t,i) OHAM EXACT AE in [4](k = 2) (m= 3) AE in [5] (m= 3) AE in OHAM
( 1

2 , 1
2 , 1

2 ) 0.0625 0.0625 7.78×10−2 2.288×10−3 6.6998×10−7

( 1
4 , 1

4 , 1
4 ) 3.9063×10−3 3.9063×10−3 2.12×10−2 2.877×10−3 4.6084×10−9

( 1
8 , 1

8 , 1
8 ) 2.4414×10−4 2.4414×10−4 5.12×10−2 7.848×10−4 3.4090×10−11

( 1
16 , 1

16 , 1
16 ) 1.5259×10−5 1.5259×10−5 7.98×10−2 1.014×10−3 2.6233×10−13

( 1
32 , 1

32 , 1
32 ) 9.5367×10−7 9.5367×10−7 1.11×10−2 1.028×10−3 2.0415×10−15

( 1
64 , 1

64 , 1
64 ) 5.9605×10−8 5.9605×10−8 1.50×10−2 1.029×10−3 1.5934×10−17

Figure 5: Residual Plot for 1st order OHAM solution taking i = 1/8 for problem 5.

clearly show the reliability of OHAM over these methods.Plots of residual errors for problems (1− 5) are presented in Figures
(1− 5), respectively. it is clear from table 3 that approximate solution gets closure and closure to exact solution when order of
approximation increases.

5 Conclusion
In this work, it is proved that OHAM is a consistent and efficient tool for strongly nonlinear problem and higher dimensional
VFIE. The proposed method is tested with solution of(1+ 1) and (2+ 1) dimensional VFIE. Results reveal that the presented
technique is an accurate and reliable one. The fast convergence and accuracy of the proposed technique is a valid reason for
researcher to use OHAM for different nonlinear problem arising in different field of science and technology. In the next work, we
will extent the proposed technique for strongly nonlinear two-dimensional problem of fractional order.
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