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Two classes of linearly implicit numerical methods for stiff
problems: analysis and MATLAB software*

Dajana Conte a · Giovanni Pagano a · Beatrice Paternoster a

Abstract

The purpose of this work lies in the writing of efficient and optimized Matlab codes to implement two
classes of promising linearly implicit numerical schemes that can be used to accurately and stably solve
stiff Ordinary Differential Equations (ODEs), and also Partial Differential Equations (PDEs) through the
Method Of Lines (MOL). Such classes of methods are the Runge-Kutta (RK) [28] and the Peer [17], and
have been constructed using a variant of the Exponential-Fitting (EF) technique [27]. We carry out
numerical tests to compare the two methods with each other, and also with the well known and very
used Gaussian RK method, by the point of view of stability, accuracy and computational cost, in order to
show their convenience.

1 Introduction
In this paper, we propose optimized Matlab codes for solving initial values problems of the type

�

y ′(t) = f (t, y(t)),
y(t0) =y0,

t ∈ [t0, T], f : R×Rd → Rd . (1)

For the numerical solution of ODEs of the type (1), which can also arise from PDEs semi-discretized in space using the MOL,
there are several methods in the scientific literature. The choice of the numerical method must be weighed according to the
characteristics of the problem to be solved. For example, if all components of the problem are characterized by severe stiffness, it
is advisable to use totally implicit methods [2, 3, 23]. If, on the other hand, the vector field f is characterized by a stiff part
and a non-stiff one, it can be used an Implicit-Explicit approach [6, 7, 8, 9], in which stiff components are treated with implicit
methods, and non-stiff components with explicit methods. Finally, if the ODEs system is not affected by stiffness, explicit methods
[20, 29, 30, 34] can be used, which are much cheaper than implicit ones (see, e.g, [4, 22] for an overview on these approaches).

However, the characteristics of the problem (1) are not always a-priori known. Therefore, given that the use of a totally implicit
method can be very expensive, as the solution of a big dimension non-linear system is required at each step, and that of an explicit
method can lead to numerical instability, one can resort to the use of linearly implicit methods [5, 12, 15, 18, 24, 25, 31, 32]. In
fact, linearly implicit methods, requiring the resolution of linear systems at each step, are much cheaper than implicit methods,
especially as the size d of the problem to be solved increases. In addition, they usually have very good stability properties. Hence,
they are also advantageous over explicit methods, whereby the use of very small time steps may be required.

In this work, we analyze two different promising linearly implicit numerical methods, belonging to the class of RK and Peer,
proposing for them an alternative formulation to reduce the computational cost of the related Matlab code. Fixing the uniform
discrete grid {tn = t0 + nh; n= 0, ..., N ; tN = T}, one-step RK methods are s-stage numerical schemes of the form



















Yn,i =yn + h
s
∑

j=1

ai j f (tn + c jh, Yn, j), 1≤ i ≤ s,

yn+1 =yn + h
s
∑

j=1

b j f (tn + c jh, Yn, j),

n= 0, ..., N − 1, (2)

where the stages are Yn,i ≈ y(tn + cih), i = 1, ..., s, and the advancing solution is yn+1 ≈ y(tn+1). Peer methods are instead
two-step numerical schemes formulated as

Yn,i =
s
∑

j=1

bi j Yn−1, j + h
s
∑

j=1

ai j f (tn−1 + c jh, Yn−1, j) +
s
∑

j=1

qi j Yn, j + h
s
∑

j=1

ri j f (tn + c jh, Yn, j), 1≤ i ≤ s, n= 1, ..., N − 1, (3)

where the stages approximate the exact solution at the same points as the RK. Usually, and this is the choice made for the method
discussed in this work, the advancing solution corresponds to the last stage, i.e. cs = 1.

The RK methods (2), see, e.g., [3], are the best known numerical schemes that can be used to solve first order ODEs of type
(1). In fact, their coefficients, depending on the related order conditions, can be easily obtained by means of the Butcher tree
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theory. Furthermore, they are one-step numerical schemes, which means that no starting procedure is required. Finally, implicit
RK methods enjoy excellent stability properties and thus can be used to solve highly stiff ODEs and PDEs. On the other hand, Peer
methods, see, e.g., [34], are newer and less known than RK methods, but they are advantageous over the latter in two aspects.
First of all, compared to RK [33], they are not affected by order reduction if applied to very stiff problems, and this happens
thanks to the way in which the related order conditions are defined. Furthermore, they can be parallelized. In fact, observing
formulation (3), note that if (qi j)si, j=1 and (ri j)si, j=1 are diagonal matrices, the subsequent stages depend only on those calculated
in the previous interval. Since Peer methods are two-step numerical schemes, however, they require a starting procedure. In this
work, we also show that the starting procedure for Peer methods can be performed efficiently through the linearly implicit RK
schemes derived in [28].

The two classes of linearly implicit methods we analyze have been derived using the EF technique [26, 27]. Usually, the
EF technique is used when the oscillating trend and the exact frequency of the exact solution of the problem to be solved are
known [11, 13, 14, 16]. An EF inspired approach has been proposed in [28] to derive the principal term of the local truncation
error of explicit two- and three-stage one-step RK methods, imposing the greatest possible accuracy to determine the stages and
the advancing solution. By doing so, new methods coefficients are obtained, which appear to depend on the Jacobian of the
ODEs system (1), and it is possible for them a choice that leads to an increase in the order of consistency with respect to the
explicit case and to A-stable schemes. Following what has been done in [28] for RK methods, in [17] the authors extended the EF
inspired procedure for explicit two-stage Peer methods. However, Peer methods are two-step numerical schemes, and this, as we
will see, leads to different calculations and results than those obtained for RK. Even for Peer methods an improvement in stability
and accuracy is obtained.

This paper is organized as follows. In Section 2 we recall the linearly implicit RK methods proposed in [28], showing in detail
the derivation of the two-stage version. Furthermore, we propose a related Matlab code based on an equivalent formulation
of these methods, leading to a reduction in computing times. In Section 3 we recall the linearly implicit Peer methods derived
in [17], then doing the same as in Section 2. In Section 4 we show in detail the writing of a Matlab script to apply the codes
reported in Sections 2 and 3. In Section 5 we perform numerical tests to compare the two classes of methods also with another
well known numerical scheme, showing their utility. In Section 6 we discuss the obtained results.

2 Linearly implicit Runge-Kutta methods
The linearly implicit RK methods we consider have been derived through the EF in [28]. Before showing the Matlab code, we
describe these methods and the technique of derivation of the coefficients.

Since in [28] the author shows the adopted procedure mainly for the three-stage case, we now show in detail the computations
for the two-stage case. Consider an explicit two-stage RK method of order two, whose coefficients can be summarized in the
following Butcher tableau:

0
c2 a21

b1 b2

, c2 ∈ (0,1], a21 = c2, b1 = 1−
c2

2
, b2 = 1− b1. (4)

The coefficients values of Tableau 4 can be easily derived using the famous Butcher tree theory.
In [28], the author derives instead different coefficients for an explicit two-stage RK method, using the EF approach. First of

all, consider the first RK stage
Yn,1 = yn, yn ≈ y(tn).

Moreover, consider the second RK stage, which is computed as follows:

Yn,2 = yn + ha21 f (tn, Yn,1). (5)

Since Yn,2 ≈ y(tn + c2h), it makes sense to derive a value of a21 in (5) for which one gets the best possible approximation. The EF
approach foresees to consider the continuous expression of the second stage

Y2(t) = y(t) + ha21 y ′(t), (6)

then defining the related error operator
L2 y(t) = y(t + c2h)−Y2(t). (7)

The operator L2 y(t) measures the error associated with the calculation of the second stage.
Following the EF approach, to make this error small, as many moments as possible have to be annihilated. The moments

associated with L2 y(t), which we indicate with L2k, k ≥ 0, correspond to the evaluations of L2 y(t), for y(t) = tk, k ≥ 0, at t = 0.
In fact, the following property is exploited, which binds the moments to the related error operator:

L2 y(t) =
∞
∑

k=0

L2k
y (k)(t)

k!
.

From (6)-(7), it holds that
L2 tk = (t + c2h)k − (tk + ha21ktk−1), k ≥ 0.

Therefore, the moments are

L20 = 1− 1= 0, L21 = h(c2 − a21), L22 = (c2h)2, . . . , L2k = (c2h)k, k ≥ 2.
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In our case, the first moment is already null, and to annihilate the second one it is necessary to set a21 = c2. It is not possible to
annihilate the subsequent ones, as it makes no sense to choose c2 = 0. Therefore, the following writing holds:

y(t + c2h) = Y2(t) + er r2(t), (8)

where

er r2(t) =
∞
∑

k=0

L2k
y (k)(t)

k!
= ter r2

(t) +O(h4),

ter r2
(t) =

1
2
(c2h)2 y (2)(t) +

1
6
(c2h)3 y (3)(t).

The final step lies in the computation of the advancing solution, given by

yn+1 = yn + h(b1 f (tn, yn) + b2 f (tn + c2h, Y2)). (9)

As previously done, the related error operator

Ladv y(t) = y(t + h)−Y(t), (10)

is introduced, where
Y(t) = y(t) + h(b1 f (tn, Y1) + b2 f (tn + c2h, Y2)).

Taking into account that, from (8), er r2(t)∼ O(h2), and using Taylor series expansions, it holds that

y ′(t + c2h) = f (t + c2h, y(t + c2h)) = f (t + c2h,Y2(t) + er r2(t)) = f (t + c2h,Y2(t)) + J2(t)er r2(t) +O(er r2(t)
2),

where J2(t) = f y(t+ c2h, y)|y=Y2(t) is the Jacobian of the ODEs system (1) computed at the second stage Yn,2 during the numerical
integration. In fact, using the localizing assumption y(tn) = yn (then y ′(tn) = f (tn, Yn,1)), which is supposed to be valid for
obtaining the order conditions of a numerical method, from (5)-(6), it follows that Y2(tn) = Yn,2. Finally, we can write

y ′(t + c2h) = f (t + c2h,Y2(t)) + J2(t)ter r2
(t) +O(h4).

From (10), ignoring the terms of order equal to or greater than four, it is obtained that

Ladv tk = (t + h)k − tk − h(b1ktk−1 + b2(k(t + c2h)k−1 − J2(t)ter r2∗(t))),

where

ter r2∗(t) =
1
2
(c2h)2k(k− 1)tk−2 +

1
6
(c2h)3k(k− 1)(k− 2)tk−3, k ≥ 0.

The moments now are

Ladv0 = 0, Ladv1 = h(1− b1 − b2), Ladv2 = h2(1− b2c2(2− c2hJ2(t))), Ladv3 = h3(1− b2c2
2(3− c2hJ2(t))), . . . .

Annihilating Ladv1 and Ladv2 leads to

b2 =
1

2c2

�

I −
c2

2
hJ2(tn)
�−1

, b1 = 1− b2, (11)

where we have indicated with I the Identity matrix of dimension d. Setting the coefficients as in (11) leads to a two-stage RK
method that has at least order two. Note therefore that the coefficients b1 and b2 are no longer scalars and constants as in the
explicit case, but they are matrices dependent on the Jacobian of the ODEs system (1). This is the reason why, from now on,
we will indicate them with capital letters, i.e. with B2 and B1, respectively. Although the considered RK method is explicit by
structure, it is linearly implicit, as we will show that the dependence of the coefficients on the equation to be solved practically
leads to the solution of some linear systems.

Making similar considerations and calculations for a three-stage explicit RK with the Butcher tableau

0
c2 a21

c3 0 a32

b1 b2 b3

,

one gets a method that has at least order three by setting a21 = c2, a32 = c3, and

B1 =Q−1T, B3 =
1
c2

2

B3

�

(1− c2 − c3(3c3 − 2c2))I + (−c2
3 + c2c3 + c2

2)hJ3(tn)
�

, B3 = I − B1 − B2,

where

T = (3c2 − 2)I − c2(c2 − 1)hJ2(tn),

Q = c3

�

6(c2 − c3)I + c2(3c3 − 2c2)hJ2(tn) + c3(2c3 − 3c2)hJ3(tn) + c3c2(c2 − c3)h
2J3(tn)J2(tn)
�

,

J2(t) = f y(t + c2h, y)|y=Yn,2
, J3(t) = f y(t + c3h, y)|y=Yn,3

.

Dolomites Research Notes on Approximation ISSN 2035-6803



Conte · Pagano · Paternoster 69

Table 1: Accuracy and stability properties of the two- and three-stage linearly implicit RK methods described in Section 2 by setting specific
values for the coefficients.

Two-stage linearly implicit RK Three-stage linearly implicit RK
Coefficients Order Stability Coefficients Order Stability

c2 = 1 2 A-stability c2 = 1/2, c3 = 1 4 A-stability
c2 = 2/3 3 No A-stability c2 = 1, c3 = 1/2 4 A-stability

Note therefore that we have directly reported the coefficients bi , i = 1, 2, 3, using capital letters, as they are Jacobian-dependent
matrices.

In [28], the author derives values of the coefficients of the two- and three-stage linearly implicit RK methods that allow to
obtain A-stable numerical schemes and/or with increased order of consistency. The mentioned results are summarized in Table
1. For the three-stage method, we will directly use the A-stable version of order four with c2 = 1/2 and c3 = 1, whose matrix
coefficients can be simplified as

B1 = B−1
den

�

2I − 3hJ2(t)
�

, B2 = B−1
den

�

8I − 2hJ3(t) + h2J2(t)J3(t)
�

, B3 = B−1
den

�

2− hJ2(t)
�

, (12)

where
Bden = 12I − 4hJ2(t)− 2hJ3(t) + h2J2(t)J3(t). (13)

2.1 Matlab implementation

In this subsection, we show an optimized Matlab code for the linearly implicit RK methods analyzed in this paper. To optimize
the code while avoiding the inversion of matrices, we observe that such RK methods can be reformulated.

2.1.1 Optimization of the two-stage version

Considering the two-stage case, from (9)-(11), in the classic formulation the advancing solution is calculated as

yn+1 = yn + h(B1 f (tn, yn) + B2 f (tn + c2h, Yn,2)),

where
B1 = I −Q−1, B2 =Q−1, Q = 2c2 I − c2

2hJ2(t).

Note that all the other coefficients are scalars. By setting k1 = hf (tn, yn) and k2 = hf (tn + c2h, Yn,2), we can write

yn+1 = yn + k1 −Q−1k1 +Q−1k2.

Hence, we have to practically solve two linear systems of the form

Ãx = b̃,

where, for both, Ã= Q, and b̃ = k1 or b̃ = k2, respectively. Since the coefficient matrix of the two linear systems is the same,
rather than solving the two systems separately, we can a-priori calculate the LU factorization of Q using the Matlab function
lu, then computing x1 = U\(L\k1) and x2 = U\(L\k2), where \ is the Matlab backslash command. Finally, we compute the
advancing solution as

yn+1 = yn + k1 − x1 + x2.

By reformulating the method in this way, we are able to obtain lower CPU times than the classic formulation, as we will show
in numerical tests.
Remark 1. It is not certain that a square matrix always admits a pure LU factorization, where L is a lower triangular matrix and
U is upper triangular. However, a square matrix A always admits a factorization of LU P type, i.e. PA= LU , where P is known as
permutation matrix. The Matlab function lu returns two matrices L and U linked precisely to a factorization of this type, in which
L is not exactly lower triangular, but is the product between a transposed permutation matrix and a lower triangular matrix.

2.1.2 Optimization of the three-stage version

Using similar idea to that of the two-stage case, also for the three-stage case we now propose an alternative formulation of the
linearly implicit RK methods to avoid inverting matrices, considerably lowering the computing times.

Note that all the coefficients are scalars, except Bi , i = 1, 2, 3, which are involved in the computation of the advancing solution

yn+1 = yn + h(B1 f (tn, yn) + B2 f (tn + c2h, Yn,2) + B3 f (tn + c3h, Yn,3)).

As previously said, we fix the matrix coefficients Bi , i = 1, 2, 3, as in (12)-(13). Setting ki = Bnum
i hf (tn+ cih, Yi), i = 1, 2, 3, where

Bnum
i is the numerator of Bi , i = 1,2, 3 (12), then computing the LU factorization of Bden (13), the advancing solution becomes

yn+1 = yn + x1 + x2 + x3,

where x i = U\(L\ki), i = 1, 2,3. This reformulation allows a significant reduction in the cost of the method.
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Table 2: Input arguments of the functions lin_imp_RK.m and lin_imp_peer.m.

Argument Description
N - integer scalar Number of discrete time intervals
tspan - double array Two-component row vector containing first and last grid point, respectively
y0 - double array Column vector of length d containing the problem exact solution at the initial time point t0
p - integer scalar Parameter selected by the user, related to chosen problem to be solved

Table 3: Output arguments of the functions lin_imp_RK.m and lin_imp_peer.m.

Argument Description
CPUtime - double scalar Total CPU time in seconds taken by the method
yT - double array Column vector of length d containing the problem numerical solution at the final time point tN
y - double array Matrix of size d × (N + 1) containing the numerical solution yn in column n+ 1
t - double array Row vector of length N + 1 containing all the time grid points

2.1.3 Matlab code

The main program lin_imp_RK.m is shown below. The Input and Output arguments are described in Tables 2 and 3, respectively.
The auxiliary functions used by it are briefly summarized in Table 4. Furthermore, the called built in Matlab functions are listed
in Table 5.

From line 2 to 4 of the function lin_imp_RK.m, we memorize in a variable called dim the dimension of the problem,
then defining the Identity matrix Id and deciding if we want to work with the two- or three-stage linearly implicit RK method.
Therefore, the parameter s of line 4 must be set by the user according to his preferences. In line 5, the user can decide whether
to use the classic formulation, setting form=1, or the optimized one, setting form=2. From line 7 to 14, we define the scalar
coefficients of the RK method. In line 16, we initialize the matrix y, which contains in column n+ 1 the approximation of the
numerical solution at tn. In fact, the first column of y corresponds to the vector y0. We then define other quantities of interest,
such as the step-size in time h, the discrete grid t, and the variable n, which represents the current integration step. From line
25 to 43, we compute the advancing solution at each step by means of the two-stage linearly implicit RK method, if selected.
From line 46 to 78, we compute the advancing solution at each step by means of the three-stage linearly implicit RK method, if
selected. Finally, we calculate the CPU time and store the solution at the last grid point in a column vector called yT. By default,
the code is setted on the three-stage version (see line 4, where s=3) with the optimized formulation (see line 5, where form=2).

1 function [CPUtime ,yT,y,t] = lin_imp_RK(N,tspan ,y0,p)
2 dim = length(y0);
3 Id = eye(dim);
4 s = 3;
5 form = 2;
6 % % Selecting the matrix A and vector c of the Runge -Kutta
7 switch s
8 case 2
9 c = [0;1];

10 A = [0 0;c(2) 0];
11 case 3
12 c = [0;1/2;1];
13 A = [0 0 0;c(2) 0 0;0 c(3) 0];
14 end
15 % % Initialization
16 y = [y0];
17 h = (tspan (2)-tspan (1))/N;
18 t = linspace(tspan (1),tspan (2),N+1);
19 n = 1;
20 % % Method
21 C = cputime;
22 switch s
23 case 2
24 % % Using the two -stage Runge -Kutta
25 for n = 2:N+1
26 Y1 = y(:,n-1);
27 Y2 = y(:,n-1)+h*c(2)*funz(t(n-1),Y1,p);
28 M2 = h*jacob(t(n-1)+c(2)*h,Y2 ,p);
29 Q = 2*c(2)*Id -c(2)*c(2)*M2;
30 switch form
31 case 1
32 % % Using classic method formulation
33 B1 = Id-inv(Q); B2 = Id-B1;
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34 y(:,n) = y(:,n-1)+h*(B1*funz(t(n-1),Y1 ,p)+...
35 B2*funz(t(n-1)+c(2)*h,Y2,p));
36 case 2
37 % % Using LU decomposition
38 [L,U] = lu(Q);
39 k1 = h*funz(t(n-1),Y1,p); x1 = U\(L\k1);
40 k2 = h*funz(t(n-1)+c(2)*h,Y2,p); x2 = U\(L\k2);
41 y(:,n) = y(:,n-1)+k1-x1+x2;
42 end
43 end
44 case 3
45 % % Using the three -stage Runge -Kutta
46 for n = 2:N+1
47 Y1 = y(:,n-1);
48 Y2 = y(:,n-1)+h*c(2)*funz(t(n-1),Y1,p);
49 Y3 = y(:,n-1)+h*c(3)*funz(t(n-1)+c(2)*h,Y2 ,p);
50 M2 = h*jacob(t(n-1)+c(2)*h,Y2 ,p);
51 M3 = h*jacob(t(n-1)+c(3)*h,Y3 ,p);
52 switch form
53 case 1
54 % % Using classic method formulation
55 Bden = Id -(1/3)*M2 -(1/6)*M3 +(1/12)*M3*M2;
56 Q = inv(Bden);
57 B1num = Id -(3/2)*M2;
58 B2num = Id -(1/4)*M3 +(1/8)*M3*M2;
59 B3num = Id -(1/2)*M2;
60 B1 = (1/6)*Q*B1num;
61 B2 = (2/3)*Q*B2num;
62 B3 = (1/6)*Q*B3num;
63 y(:,n) = y(:,n-1)+h*(B1*funz(t(n-1),Y1 ,p)+...
64 B2*funz(t(n-1)+c(2)*h,Y2,p)+...
65 B3*funz(t(n-1)+c(3)*h,Y3,p));
66 case 2
67 % % Using LU decomposition
68 Bden = Id -(1/3)*M2 -(1/6)*M3 +(1/12)*M3*M2;
69 [L,U] = lu(Bden);
70 B1num = (1/6)*(Id -(3/2)*M2);
71 B2num = (2/3)*(Id -(1/4)*M3 +(1/8)*M3*M2);
72 B3num = (1/6)*(Id -(1/2)*M2);
73 k1 = B1num*h*funz(t(n-1),Y1 ,p); x1 = U\(L\k1);
74 k2 = B2num*h*funz(t(n-1)+c(2)*h,Y2 ,p); x2 = U\(L\k2);
75 k3 = B3num*h*funz(t(n-1)+c(3)*h,Y3 ,p); x3 = U\(L\k3);
76 y(:,n) = y(:,n-1)+x1+x2+x3;
77 end
78 end
79 end
80 Cf = cputime;
81 CPUtime = Cf-C;
82 yT = y(: ,end);
83 end

Table 4: Short description of the functions funz.m and jacob.m recalled in the algorithms lin_imp_RK.m and lin_imp_peer.m.

Input of both Output of funz Output of jacob
t - double scalar
y - double array Column vector f (t,y) of length d Jacobian matrix f y(t,y) of size d × d
p - integer scalar

Note that, in the main algorithm lin_imp_RK.m, the functions funz.m and jacob.m are recalled, which are briefly described
in Table 4. Observe that they, like the main function lin_imp_RK.m, have the parameter p as Input argument. In fact, the
idea followed in the implementation of the code is to consider a test-set of problems of the type (1), which can also derive
from PDEs semi-discretized in space. Each choice of p corresponds to a different problem of the mentioned test-set. Therefore,
funz(t,y,p) returns the value of the relative vector field f evaluated at the point (t,y), and jacob(t,y,p) does the same
thing for the Jacobian of f .
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Table 5: Auxiliary Matlab functions adopted in the algorithms lin_imp_RK.m and lin_imp_peer.m in alphabetical order.

Function Task
backslash Computes in a different way A−1B, where A and B are matrices
cputime Returns the CPU time in seconds of the Matlab process
eye Returns the Identity matrix of required dimension
inv Computes the inverse of a square matrix
length Returns the length of a vector
linspace Generates a row vector of linearly equally spaced points
lu Computes the LU factorization of a matrix

3 Linearly implicit Peer methods
A similar EF-based approach to improve the stability of explicit two-stage Peer methods has been proposed in [17]. However, the
difference between the RK methods and Peer methods is substantial, as the latter are two-step numerical schemes. Let us quickly
recap the made calculations to derive the coefficients values of the linearly implicit Peer methods.

The continuous expressions of the stages Yn,1 and Yn,2 in the interval [tn, tn+1] are

Y1(t) =b11Y1(t − h) + b12 y(t) + ha11 f (t + h(c1 − 1),Y1(t − h)) + ha12 y ′(t),
Y2(t) =b21Y1(t − h) + b22 y(t) + ha21 f (t + h(c1 − 1),Y1(t − h)) + ha22 y ′(t) + hr21 f (t + hc1,Y1(t)).

In this case, assuming that the first stage is affected by error (as done for the RK methods in the previous section), means assuming
that Y1(t − h) also does not represent the exact value of the first stage in [tn−1, tn]. Therefore, unlike what has been done in [28]
the authors of [17] had to work also with the moments associated with Y1(t − h), annihilating them until order two, then doing
the same for Y1(t). Finally, the advancing solution, which corresponds with the second stage, has been computed by requiring for
it order three.

Since for Peer methods the overall consistency order is equal to the minimum order in which all stages are calculated [34],
the linearly implicit Peer methods determined with the EF technique still have order two, even if, as we will see in numerical
tests, they initially exhibit order three and are characterized by a very low error. The coefficients of these methods, expressed in
matrix form, are as follows:

A21 =
acnum

21

acden
21

�

I +
1

acden
21

�

Aden1
21 hJ1(t − h) + Aden2

21 hJ1(t)
�

�−1�

I +
1

acnum
21

Anum
21 hJ1(t)
�

,

A22 =
acnum

22

acden
21

�

I +
1

acden
21

�

Aden1
21 hJ1(t − h) + Aden2

21 hJ1(t)
�

�−1�

I +
1

acnum
22

�

Anum1
22 hJ1(t − h) + Anum2

22 hJ1(t)
�

�

,

R21 =
r cnum

21

r cden
21

�

I +
1

r cden
21

�

Rden1
21 hJ1(t − h) + Rden2

21 hJ1(t)
�

�−1�

I +
1

r cnum
21

Rnum
21 hJ1(t − h)
�

,

(14)

where

Anum
21 =−
�

− 1+ b21(−1+ c1)
2
��

b11(−1+ c1)
3 − (−3+ c1)c

2
1

�

Anum2
21 ,

Anum2
21 =
�

2I + b11(−1+ c1)
�

− 2I + (−1+ c1)hJ1(t − h)
�

− c1

�

2I + c1hJ1(t − h)
��

,
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21 =2(−1+ c1)

�

b11(−1+ c1)
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2
1

��

b11hJ1(t) + c1

�

2I + b11(−2+ c1)hJ1(t)− c1hJ1(t)
��

,
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2
1)
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1)
�
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3 − (−3+ c1)c

2
1)A
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acnum
21 =− 4(−1+ c1)c1

�

2− 3c1 + b21(2+ b11(−1+ c1)
3 + 3(−1+ c1)c1)

�

,

acden
21 =24c1(−1+ c1)
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acnum
22 =4(−1+ c1)

�

5+ 6(−2+ c1)c1 + b21(−1+ b11(−1+ c1)
3 − 3(−2+ c1)c

2
1)
�

,
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21 =
�

1− b21(−1+ c1)
2
��

b11(−1+ c1)
3 − (−3+ c1)c

2
1

�

,

Rden1
21 =2c1(b11(−1+ c1)

3 − (−3+ c1)c
2
1),

Rden2
21 =(b11(−1+ c1)

3 − (−3+ c1)c
2
1)A

num2
21 ,

r cnum
21 =2
�
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�

,

r cden
21 =12(−1+ c1)c1.

(15)

Therefore, note that the coefficients a21, a22 and r21 are Jacobian-dependent matrices, and for this reason we have indicated
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them with a capital letter in (14), respectively. Instead, the coefficients a11 and a12 are scalars and correspond to

a11 =
�

−
�

b11(−1+ c1)
2
�

+ c2
1

�

/
�

2(−1+ c1)
�

,

a12 =
�

−
�

b11(−1+ c1)
2
�

+ (−2+ c1)c1

�

/
�

2(−1+ c1)
�

.
(16)

The other free coefficients are set so as to obtain the best possible stability properties. In particular, b11 = −0.24, b21 = −0.31,
and c1 = 0.2. As a matter of consistency, b12 = 1− b11, and b22 = 1− b21. As mentioned in the Introduction, the advancing
solution is calculated with the second stage, then c2 = 1. The linearly implicit Peer method recalled in this section has much
better stability properties and exhibit better accuracy than classic explicit Peer methods with the same number of stages.

3.1 Matlab implementation

In this subsection, we show the optimized Matlab code of the linearly implicit Peer method analyzed in this paper. As done in the
previous section, we need to reformulate the method avoiding the inversion of matrices.

3.1.1 Optimization

We first observe, from the coefficients of the method (14)-(15), that the matrices to be inverted in the classical formulation are

Q1 = I +
1

acden
21

�

Aden1
21 hJ1(t − h) + Aden2

21 hJ1(t)
�

, Q2 = I +
1

r cden
21

�

Rden1
21 hJ1(t − h) + Rden2

21 hJ1(t)
�

.

Note also that the advancing solution, which corresponds with the second stage, is

Yn,2 = b21Yn−1,1 + b22Yn−1,2 + h(A21 f (tn + h(c1 − 1), Yn−1,1) + A22 f (tn, Yn−1,2) + R21 f (tn + hc1, Yn,1)).

Thus, while the first stage involves only scalar coefficients, the second stage involves the three matrix coefficients A21, A22 and R21.
Then, we store in L1 and U1 the matrices of the factorization of Q1 carried out with the Matlab function lu, respectively.

Furthermore, calling with ANU M
21 , ANU M

22 and RNU M
21 the numerators of A21, A22 and R21 (14), respectively, we compute

k1 = ANU M
21 hf (tn + h(c1 − 1), Yn−1,1), k2 = ANU M

22 hf (tn, Yn−1,2), k3 = RNU M
21 hf (tn + hc1, Yn,1).

Finally, using the Matlab backslash command, we solve the linear systems

Q1 x i = ki , i = 1, 2,

as x i = U1\(L1\ki), i = 1, 2, then computing x3 =Q2\k3. Therefore, the second stage is computed as

Yn,2 = b21Yn−1,1 + b22Yn−1,2 + x1 + x2 + x3.

3.1.2 Matlab code

The main program lin_imp_peer.m is shown below. The Input and Output arguments are the same as the linearly implicit RK
methods described in the previous section (see Tables 2 and 3, respectively). The same holds for the used auxiliary functions and
the called built in Matlab functions (see Tables 4 and 5, respectively).

From line 2 to 21 of the function lin_imp_peer.m, we store in the variable dim the dimension of the problem, then defining
the Identity matrix, deciding if we want to work with the classic or optimized formulation (as in the RK case, by default form=2,
i.e. we are working with the optimized formulation), and fixing the scalar and constant coefficients of the linearly implicit
Peer method. From line 23 to 25, we define the step-size in time h, the discrete grid, and the variable n indicating the current
integration step, respectively. In lines 27, 28, and 29, we carry out the stages initialization. Indeed, as said several times so
far, Peer methods are two-step schemes, and it is therefore necessary to use a one-step method to determine the initial value
of the stages. In this case, we need for the two stages an approximation of the solution at the points [t0 + c1h] and [t0 + c2h],
respectively. Note, from line 28, that to compute Y0,1, we call the function lin_imp_RK.m, i.e. we use the linearly implicit RK
methods shown in the previous section. We do the same for Y0,2 in line 29. Since, as previously said, the consistency order of Peer
methods corresponds to the minimum order with which each stage is calculated, in this case the starting procedure must be done
with a numerical method that has at least order two, as the Peer method we are considering has order two. Thus, we can choose
both the linearly implicit two-stage and three-stage RK (by default we are considering the latter).

We are considering c2 = 1, i.e. the second stage also represents the advancing solution. So, we store the column vector Y0,2 in
y. Initially, for index consistency (i.e., to make the initial index of the for loop starting in line 35 to be 2 and not 3), we do
not insert y0 in the vector y. This is done after applying the method, in line 79. Since for the considered linearly implicit Peer
methods we need to know the Jacobian and the stages also in the previous grid interval, we store them in the arrays M1tmh
(initialized in line 31 and updated in line 73), Y1nm1 and Y2nm1 (initialized in line 32 and updated in line 74), respectively.
Analogously, the arrays containing such quantities in the current grid interval are named with M1t (computed in line 39), Y1n
(computed in line 38) and Y2n (computed in line 58 or 71, depending on which formulation we are using), respectively. From
line 35 to 76, we compute the solution at all the grid points. Finally, we compute the total CPU time in line 78, including that of
the stages initialization, then storing the solution at the last grid point in the column vector yT.
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1 function [CPUtime ,yT,y,t] = lin_imp_peer(N,tspan ,y0,p)
2 dim = length(y0);
3 Id = eye(dim);
4 form = 2;
5 % % Fixing method constant coefficients
6 B = [-0.24 1.24; -0.31 1.31]; c = [0.2;1];
7 A = [(-(B(1,1)*(-1+c(1))^2)+c(1) ^2) /(2*( -1+c(1)))...
8 (-(B(1,1)*(-1+c(1))^2)+(-2+c(1))*c(1))/(2*( -1+c(1)));0 0];
9 a21cnum = -4*(-1+c(1))*c(1)*(2-3*c(1)+B(2,1) *(2+B(1,1)*(-1+c(1))^3+...

10 3*( -1+c(1))*c(1)));
11 a21cden = 24*c(1)*(-1+c(1))^2;
12 a22cnum = 4*(-1+c(1))*(5+6*( -2+c(1))*c(1)+B(2,1)*(-1+B(1,1)*(-1+c(1))^3-...
13 3*( -2+c(1))*c(1)^2));
14 r21cnum = 2*( -5+(8 -3*c(1))*c(1)+B(2,1)*(-1+c(1))*(-1+B(1,1)*(-1+c(1))^3+3*c(1)));
15 r21cden = 12*( -1+c(1))*c(1);
16 A21den2 = 4*(-1+c(1))^2*(B(1,1)-B(1,1)^2*( -1+c(1))^3-3*B(1,1)*c(1) +...
17 (-3+c(1))*c(1)^2);
18 A22num1 = 2*(-1+c(1))*(-B(1,1)*(-1+c(1))^3+( -3+c(1))*c(1) ^2) *(1-2*c(1) +...
19 B(2,1)*(-1+c(1) ^2));
20 R21num = (1-B(2,1)*(-1+c(1))^2)*(B(1,1)*(-1+c(1))^3-(-3+c(1))*c(1)^2);
21 R21den1 = 2*c(1)*(B(1,1)*(-1+c(1))^3-(-3+c(1))*c(1)^2);
22 % % Initialization
23 h = (tspan (2)-tspan (1))/N;
24 t = linspace(tspan (1),tspan (2),N+1);
25 n = 1;
26 % % Stages initialization with linearly implicit Runge -Kutta
27 tspan1 = [tspan (1) tspan (1)+c(1)*h]; tspan2 = [tspan (1) tspan (1)+c(2)*h];
28 [CPUtime_Y1 ,Y1n ,Y1vect ,tstage1] = lin_imp_RK (1,tspan1 ,y0,p);
29 [CPUtime_Y2 ,Y2n ,Y2vect ,tstage2] = lin_imp_RK (1,tspan2 ,y0,p);
30 y = [Y2n];
31 M1tmh = h*jacob(t(n)+c(1)*h,Y1n ,p);
32 Y1nm1 = Y1n; Y2nm1 = Y2n;
33 % % Method
34 C = cputime;
35 for n = 2:N
36 f1 = funz(t(n-1)+h*c(1),Y1nm1 ,p);
37 f2 = funz(t(n-1)+h*c(2),Y2nm1 ,p);
38 Y1n = B(1,1)*Y1nm1+B(1,2)*Y2nm1+h*A(1,1)*f1+h*A(1,2)*f2;
39 M1t = h*jacob(t(n)+c(1)*h,Y1n ,p);
40 A21num2 = (2*Id+B(1,1)*(-1+c(1))*(-2*Id+(-1+c(1))*M1tmh) -...
41 c(1) *(2*Id+c(1)*M1tmh));
42 A21num = -(-1+B(2,1)*(-1+c(1))^2)*(B(1,1)*(-1+c(1))^3 -...
43 (-3+c(1))*c(1) ^2)*A21num2;
44 A21den1 = 2*(-1+c(1))*(B(1,1)*(-1+c(1))^3-(-3+c(1))*c(1)^2)*(B(1,1)*M1t +...
45 c(1) *(2*Id+B(1,1)*(-2+c(1))*M1t -c(1)*M1t));
46 A22num2 = -(3+B(2,1)*(-1+c(1))^2-2*c(1))*(B(1,1)*(-1+c(1))^3 -...
47 (-3+c(1))*c(1) ^2)*A21num2;
48 R21den2 = (B(1,1)*(-1+c(1))^3-(-3+c(1))*c(1)^2)*A21num2;
49 switch form
50 case 1
51 % % Using classic method formulation
52 Iden = inv(Id+(1/ a21cden)*( A21den1*M1tmh+A21den2*M1t));
53 A21 = (a21cnum/a21cden)*Iden*(Id+(1/ a21cnum)*A21num*M1t);
54 A22 = (a22cnum/a21cden)*Iden*(Id+(1/ a22cnum)*...
55 (A22num1*M1tmh+A22num2*M1t));
56 R21 = (r21cnum/r21cden)*inv(Id +(1/ r21cden)*...
57 (R21den1*M1tmh+R21den2*M1t))*(Id+(1/ r21cnum)*R21num*M1tmh);
58 Y2n = B(2,1)*Y1nm1+B(2,2)*Y2nm1+h*A21*f1+h*A22*f2+...
59 h*R21*funz(t(n)+h*c(1),Y1n ,p);
60 case 2
61 % % Using LU decomposition
62 Q1 = Id+(1/ a21cden)*( A21den1*M1tmh+A21den2*M1t);
63 [L1,U1] = lu(Q1);
64 A21NUM = (a21cnum/a21cden)*(Id+(1/ a21cnum)*A21num*M1t);
65 A22NUM = (a22cnum/a21cden)*(Id+(1/ a22cnum)*( A22num1*M1tmh+A22num2*M1t));
66 k1 = A21NUM*h*f1; x1 = U1\(L1\k1);
67 k2 = A22NUM*h*f2; x2 = U1\(L1\k2);
68 R21NUM = (r21cnum/r21cden)*(Id+(1/ r21cnum)*R21num*M1tmh);
69 Q2 = Id +(1/ r21cden)*( R21den1*M1tmh+R21den2*M1t);
70 k3 = R21NUM*h*funz(t(n)+h*c(1),Y1n ,p); x3 = Q2\k3;
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71 Y2n = B(2,1)*Y1nm1+B(2,2)*Y2nm1+x1+x2+x3;
72 end
73 M1tmh = M1t;
74 Y1nm1 = Y1n; Y2nm1 = Y2n;
75 y = [y Y2n];
76 end
77 Cf = cputime;
78 CPUtime = CPUtime_Y1+CPUtime_Y2+Cf -C;
79 y = [y0 y];
80 yT = Y2n;
81 end

4 Example of usage
In this section, we show the application of the previously illustrated codes on the following test ODEs system:























d y1

d t
=− 2y2 y3,

d y2

d t
=
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y1 y3,

d y3

d t
=−

1
2

y1 y2.

(17)

The ODEs system (17) is known as Euler’s model [19] and is related to the rotational motion of solid bodies. We take t ∈ [0, 10],
and y(0) = (1,0, 0.9) as initial condition. Easily, note that the Jacobian related to the Euler’s model is

J =









0 −2y3 −2y2
5
4

y3 0
5
4

y1

−1
2

y2
−1
2

y1 0









. (18)

Then, we create a script named example.m in which we apply the linearly implicit RK and Peer methods Matlab codes
described in Sections 2 and 3, respectively, as reported. This script, which we report below, can in principle contain a list of test
problems to apply the methods to, as mentioned previously. In this case, since we solve Euler’s model, we report only this test
problem in the script, which corresponds to set p=1. From line 7 to 10, we initialize the integration interval, the solution at the
starting grid point and the reference solution at the end point, respectively. This latter solution can be computed, for example,
using the Matlab function ode15s requiring maximum accuracy. In line 12 we choose the number of grid intervals into which we
divide [t0, T]. In this case, we will apply the methods using 24 intervals, then 25, and so on, up to 215. So, we define inN=4 and
finN=15. In the vectors defined in lines 13 and 14, initially empty, we will put the error and CPU time of each method for each
number of selected grid intervals. For example, errT_RK will contain in the first component the absolute error of the RK method
for N = 24, in the second for N = 25, and so on up to N = 215 in the last component. From line 15 to 25 we apply the RK and
Peer methods by calling the functions lin_imp_RK.m and lin_imp_peer.m shown and described in the previous sections, for
several values of N . Finally, we print the vectors with the errors and the CPU times of the methods, then plotting the numerical
solution computed by them in correspondence of the last value of N .

1 %% Script example.m to apply the linearly implicit Runge -Kutta and Peer methods
2 %% Selecting the problem to solve
3 p = 1;
4 switch p
5 case 1
6 fprintf('Euler ''s model\n')
7 tspan = [0 10];
8 y0 = [1;0;0.9];
9 YR = [0.89018057222794;0.36018966256315;0.87069246166083];

10 end
11 %% Initialization
12 inN = 4; finN = 15;
13 errT_RK = []; errT_peer = [];
14 CPUtime_RK = []; CPUtime_peer = [];
15 for N = 2.^( inN:finN)
16 %% Application of linearly implicit Runge -Kutta and Peer methods
17 [CPU_RK ,yT_RK ,y_RK ,t] = lin_imp_RK(N,tspan ,y0 ,p);
18 [CPU_peer ,yT_peer ,y_peer ,t] = lin_imp_peer(N,tspan ,y0 ,p);
19 %% Computation of absolute errors in norm two
20 errT_RK = [errT_RK norm(yT_RK -YR ,2)];
21 errT_peer = [errT_peer norm(yT_peer -YR ,2)];
22 %% CPU time spent by the methods

Dolomites Research Notes on Approximation ISSN 2035-6803



Conte · Pagano · Paternoster 76

23 CPUtime_RK = [CPUtime_RK CPU_RK ];
24 CPUtime_peer = [CPUtime_peer CPU_peer ];
25 end
26 %% Printing vectors with methods error and CPU time
27 format short e
28 errT_RK
29 errT_peer
30 CPUtime_RK
31 CPUtime_peer
32 %% Plots of the numerical solution computed by the methods
33 switch p
34 case 1
35 figure (1)
36 plot(t,y_RK)
37 title('RK ')
38 xlabel('t')
39 ylabel('y(t)')
40 legend('y_1 ','y_2 ','y_3 ')
41 figure (2)
42 plot(t,y_peer)
43 title('Peer ')
44 xlabel('t')
45 ylabel('y(t)')
46 legend('y_1 ','y_2 ','y_3 ')
47 end

As mentioned before, lin_imp_RK.m and lin_imp_peer.m call the functions funz.m and jacob.m, which are illustrated
in Table 4. These functions return respectively the vector field f and the Jacobian related to the selected problem p, evaluated at
the point (t,y). Below we show the function funz.m, which returns the column vector field yp (17) related to Euler’s model.

1 function yp = funz(t,y,p)
2 switch p
3 case 1
4 %% Euler 's model
5 yp(1) = -2*y(2)*y(3);
6 yp(2) = 5/4*y(3)*y(1);
7 yp(3) = -1/2*y(1)*y(2);
8 yp = [yp(1);yp(2);yp(3)];
9 end

10 end

Furthermore, we also show the function jacob.m, which returns the Jacobian (18) of Euler’s model.

1 function J = jacob(t,y,p)
2 switch p
3 case 1
4 %% Euler 's model
5 J = [0 -2*y(3) -2*y(2);
6 5/4*y(3) 0 5/4*y(1);
7 -1/2*y(2) -1/2*y(1) 0];
8 end
9 end

Finally, we show below the Matlab Command Window with the execution of the script example.m. We also report in Figure
1(a) the solution plot related to the three-stage linearly implicit RK method.

1 >> example
2 Euler 's model
3 errT_RK =
4 Columns 1 through 5
5 8.3031e-03 3.9712e-04 2.2997e-05 1.3836e-06 8.5131e-08
6 Columns 6 through 10
7 5.2863e-09 3.2934e-10 2.0478e-11 1.1941e-12 8.6611e-14
8 Columns 11 through 12
9 2.4126e-13 9.1259e-14

10 errT_peer =
11 Columns 1 through 5
12 6.2815e-01 7.2235e-02 9.4716e-03 1.2136e-03 1.5428e-04
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13 Columns 6 through 10
14 2.0180e-05 3.0052e-06 5.7452e-07 1.3315e-07 3.2973e-08
15 Columns 11 through 12
16 8.2752e-09 2.0878e-09
17 CPUtime_RK =
18 Columns 1 through 5
19 9.3750e-02 1.5625e-02 0 3.1250e-02 0
20 Columns 6 through 10
21 2.0312e-01 4.0625e-01 4.5312e-01 6.2500e-01 5.3125e-01
22 Columns 11 through 12
23 1.0469e+00 1.4219e+00
24 CPUtime_peer =
25 Columns 1 through 5
26 1.5625e-02 0 0 3.1250e-02 4.6875e-02
27 Columns 6 through 10
28 2.1875e-01 2.9688e-01 3.1250e-01 5.6250e-01 6.5625e-01
29 Columns 11 through 12
30 7.3438e-01 1.4844e+00
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(a) Numerical solution of (17) computed by the three-stage RK. (b) Reference solution of (19) computed by the Matlab function ode15s.

Figure 1: Numerical solution of Euler’s model computed by the three-stage linearly implicit RK method in correspondence of N = 215 on the left,
and profile of the reference solution of the Burgers’ PDE (19) computed by the Matlab function ode15s on the right.

5 Numerical results
We apply the methods considered in this paper to the following Burgers’ PDE [1], endowed with periodic boundary conditions:

∂ y
∂ t
= ε
∂ 2 y
∂ x2
−

1
2
∂ y2

∂ x
, (x , t) ∈ [x0, X ]× [t0, T] = [0,2π]× [0, 2]. (19)

Furthermore, we consider as initial conditions

y(x , 0) =

�

1, x ∈ [0,π],
0, x ∈ (π, 2π].

Obviously, in order to apply the linearly implicit RK and Peer methods, we need to perform a spatial semi-discretization of the
equation. In our case, we consider central finite differences of order four for both the first order spatial derivative and the second
order spatial derivative. Then, by fixing the uniform spatial grid {xn = x0 +mk; m= 0, ..., M ; xM = X }, the Burgers’ PDE (19)
becomes the following ODEs system of size M + 1:

y ′(t) = εL1 y(t)−
1
2

L2 y(t)2. (20)

Then, by calling with (d−2, d−1, d, d1, d2) the significant entries of the sub-, main-, and over-diagonals, L1 and L2 are the following
pentadiagonal Toeplitz matrices:

L1 =
1

12k2
(−1, 16,−30,16,−1), L2 =

1
12k
(1,−8,0, 8,−1).
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Note also that trivially, from (20), the Jacobian is the non-constant matrix

J(t, y(t)) = εL1 − L2 y(t).

To perform the numerical tests, we set ε= 10−2 and M = 28, which are parameters corresponding to a stiff case.
In addition to comparing the Peer and RK methods in their classical and optimized formulation, we also apply the famous

two-stage fully implicit RK based on Gaussian collocation points [21] of order four, which is one of the most used methods to
solve first order initial value problems, due to its excellent accuracy and stability properties. This method has the following
Butcher tableau:

3−
p

3
6

1
4

3− 2
p

3
12

3+
p

3
6

3+ 2
p

3
12

1
4

1
2

1
2

. (21)

Since the RK of Gauss is fully implicit, we use Newton’s iterations to solve the non-linear system of stages at each step, requiring
accuracy equal to 10−8 for the computation of the related solution. We apply the RK of Gauss because, in addition to showing the
good properties of the numerical schemes analyzed in this work and the efficiency of the related proposed Matlab codes, we also
want to show their advantages over existing good and well known methods. Then, let us recall in Table 6 the schemes that are
used in this section.

Table 6: Methods used in numerical tests.

Method Coefficients
Fully implicit RK of Gauss (RKG) (21)
Classical linearly implicit two-stage RK (CRK2) c2 = 1 (see Table 1), (11)
Optimized linearly implicit two-stage RK (ORK2) c2 = 1 (see Table 1), (11), Section 2.1.1
Classical linearly implicit three-stage RK (CRK3) c2 = 1/2, c3 = 1 (see Table 1), (12)-(13)
Optimized linearly implicit three-stage RK (ORK3) c2 = 1/2, c3 = 1 (see Table 1), (12)-(13), Section 2.1.2
Classical linearly implicit Peer (CP) b11 = −0.24, b21 = −0.31, c1 = 0.2, (14)-(15)-(16)
Optimized linearly implicit Peer (OP) b11 = −0.24, b21 = −0.31, c1 = 0.2, (14)-(15)-(16), Section 3.1.1

For each method, we determine the absolute error at the end time grid point T = 2, evaluated as the difference between the
numerical solution yT ≈ y(T) and the one (that we call yR, as it represents the reference solution) computed by the Matlab
function ode15s applied to semi-discretized ODEs system (20), requiring maximum accuracy. We also estimate the order of each
method, calculated using the formula

p(h) =
cd(h)− cd(2h)

log10(2)
,

where cd(h) = −log10(|yT − yR|) is the number of correct digits obtained with time step-size h.

Table 7: Absolute error and estimated order on the semi-discretized Burgers’ PDE (20) in correspondence of several values of the time-step size h
(and then of the number of time grid intervals N), by the optimized linearly implicit RK and Peer methods and the RKG.

ORK2 ORK3 OP RKG
h (N) |yT − yR| p(h) |yT − yR| p(h) |yT − yR| p(h) |yT − yR| p(h)

3.1250e-02 (26) 1.1130e-02 - 4.7498e-03 - 1.2861e-02 - 1.7270e-04 -
1.5625e-02 (27) 3.0787e-03 1.8541 6.4084e-05 6.2118 1.1918e-03 3.4319 1.1170e-05 3.9505
7.8125e-03 (28) 7.9555e-04 1.9523 1.5232e-06 5.3948 1.5171e-04 2.9737 7.0399e-07 3.9880
3.9062e-03 (29) 2.0055e-04 1.9880 6.5970e-08 4.5291 1.9620e-05 2.9510 4.4090e-08 3.9970
1.9531e-03 (210) 5.0243e-05 1.9970 3.6852e-09 4.1620 2.5629e-06 2.9365 2.7576e-09 3.9990
9.7656e-04 (211) 1.2567e-05 1.9992 2.2191e-10 4.0537 3.6533e-07 2.8105 1.7293e-10 3.9951
4.8828e-04 (212) 3.1422e-06 1.9998 1.4013e-11 3.9852 6.5451e-08 2.4807 1.1612e-11 3.8965
2.4414e-04 (213) 7.8558e-07 2.0000 2.5999e-12 2.4302 1.4724e-08 2.1523 2.7597e-12 2.0731
1.2207e-04 (214) 1.9640e-07 2.0000 2.4929e-12 - 3.6335e-09 2.0187 2.4156e-12 -

In Figure 1(b) we represent the profile of the reference solution. Note that the initial discontinuity at (π, 0) contributes to the
stiffness of the problem, as there is a sudden change in the behavior of the function. We report in Table 7 and in Figure 2 the
results obtained by applying all the discussed methods. Specifically, in Table 7 we report the absolute error and the estimated
order related to the optimized linearly implicit methods and the RKG, by varying the time step-size h, and therefore the number
of grid intervals N . In Figure 2 we report two work precision diagrams with the estimated number of correct digits on the abscissa
axis, and with the CPU time in logarithmic basis on the ordinate axis, comparing all the methods of Table 6.

From Table 7, note that all methods exhibit their theoretical order. In fact, the RKG and the OR3 have order four. The OR2
method has order two. However, it is interesting to note the behavior of the order of the OP method. In fact, although this
method formally has order two, it exhibits order three for most of the values of h used. This happens because, as mentioned in
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Figure 2: Work precision diagrams with the estimated number of correct digits on the abscissa axis, and with the CPU time in logarithmic basis
on the ordinate axis; on the left we compare the analyzed linearly implicit methods with the RKG, while on the right we compare the classic
formulations of these methods with the optimized ones derived in this paper.

Section 3 and extensively explained in [17], the second stage is calculated by requiring order three. Hence, since the first stage
has order two, as seen asymptotically the overall order remains two, but the behavior of this method is more similar to that of a
numerical scheme of order three. Finally, note that the RKG and ORK3 methods produce very similar errors.

From Figure 2, note that on the left we compare the RKG with the linearly implicit methods discussed in this work directly in
the optimized formulation, while on the right we show the comparison between the linearly implicit methods in the classical
formulation and those in the optimized formulation. It can be deduced that, in relation to the computational cost and the related
error, the ORK3 method is decidedly better than the others. Furthermore, the ORK2 and OP methods also produce, at least
for the first values of h, results comparable to the RKG, despite the latter having a higher order. Finally, we observe that the
optimized formulation of the linearly implcit methods actually allows to lower the computing times. For example, the three-stage
RK method reaches, in the optimized formulation, more than four correct digits at the same time as, in the classical formulation,
it reaches just two.

To perform numerical tests, we have used a laptop with a RAM of 8GB and an operative system of 64 bit. The processor is
AMD Ryzen 7 3700U with Radeon Vega Mobile Gfx 2.30 GHz. The version of Matlab used is R2022a.

6 Conclusions
In this work we have provided the Matlab codes for the application of two classes of linearly implicit methods derived by means
of the EF approach for the numerical solution of ODEs, and then also semi-discretized PDEs, characterized by stiffness. We have
shown that, by manipulating the methods in their classical formulation, it is possible to obtain an equivalent formulation which
considerably reduces their computational cost.

The linearly implicit RK methods [28] that we have discussed are very promising, as they are much cheaper than totally
implicit methods, requiring only the resolution of s linear systems at each step (where s is the number of stages), and despite
that they result A-stable. In fact, in numerical tests we have shown that the three-stage RK can be more beneficial than the well
known RKG. Furthermore, we have made a comparison of such linearly implicit RK methods with a class of linearly implicit Peer
methods [17] obtained with the same EF-based idea. By firstly providing for the latter an adequate starting procedure, we have
shown that they have very good accuracy and stability properties, resulting also competitive with the linearly implicit RK and the
RKG by the point of view of the computing times.
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