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Abstract

Phase field models have been widely considered to simulate corrosion dynamics characterised by moving
boundaries. The benefits of using these models rely on the fact that the moving interface is implicitly
treated by means of the introduction of an auxiliary variable. However, the computational cost of these
methods is typically very high. In this paper we consider a model for pitting corrosion of a metallic
specimen immersed in an electrolytic solution. For its numerical solution we consider a method that
relies on a suitable splitting of the governing equations and on the use of exponential integrators. The
use of modern MATLAB functions to evaluate the effect of matrix exponentials on a vector is crucial for
the efficient implementation of the method. The software used is presented and discussed in detail, and
some numerical tests are introduced to show the performance of the proposed algorithms.

1 Introduction

Mathematical modelling based on chemical reactions and physical laws, is crucial to understand the evolution of corrosion
processes and to predict the damages that it may cause. The solution of these mathematical models typically requires the use and
analysis of numerical methods, and their validation and calibration by means of both laboratory and computer simulations.

Corrosion phenomena are typically modelled by diffusion, reaction-diffusion or advection-diffusion Partial Differential
Equations (PDEs) for which a wide range of numerical methods is available in the literature [2,4-6,9-14,16,20,21,24,26,40,41].

In this paper we consider a corrosion system composed by a metal, such as 304 stainless steel, immersed in an electrolyte
solution, such as NaCl. Metal surfaces are typically covered by a protective film that prevents general corrosion. However, this
film may occasionally break. In this case the metal enters in direct contact with the electrolyte and locally dissolves, leading to a
phenomenon known as pitting corrosion.

The initiation of the process causing the film breakdown has a stochastic nature and occurs on very minute scales (on the
order of nanometres) and in very short times (on the order of microseconds), so it is very hard to detect. Moreover, this process
also greatly relies on the nature of the material surface and on the environmental parameters. For these reason the initiation
phenomenon is not fully understood yet [1].

Empirical models, including stochastic, probabilistic and neural network models, have been proposed in the literature
[1,28,30,31,36-38], to simulate all phases of pitting formation: initiation, nucleation and growth. These are typically modelled
as Poisson, Weilbull and Markov processes, respectively [ 1, 38]. Empirical models require large database for calibration which
is unavailable on failure events. So it is hard to construct well-calibrated empirical models, and their predictive capability is
generally limited [18].

We study here the diffusion of an existing pit simulated by the deterministic phase field model in [29]. Phase field models
have been widely used to simulate moving interface problems in a variety of contexts (see, e.g., [3,8,25,34,39]).

We consider a spatial computational domain, 2 C R", where typically n € {2, 3}, containing both the metal and the solution
phases. Let be ¢ a normalized variable accounting for the molar concentration of metal atoms or ions at each point.

In a phase field model the interface evolution is implicitly taken into account by introducing an auxiliary phase field variable,
¢. The variable ¢ has constant values ¢ = 0 and ¢ = 1 in the bulk of the electrolyte and the metal phases, respectively, and
varies continuously across the interface between the two phases. Therefore, by definition,

(p(x,t),c(x,t)) €[0,17?, xeN, t=0.

The phase field model for pitting corrosion in [29] is composed by the following two equations,

o _ af _
2= L(a¢> 0028 ). .
dc _ af
E(X’ t) —V~MV(Z +aCAc), 2)

known as the Allen-Cahn and Cahn-Hilliard equations, respectively. The parameters a,, and a,. in (1)-(2) are gradient energy
coefficients associated with ¢ and c, respectively (see [29] for more details). In practice, only one of the diffusive terms is
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Parameter Physical meaning

L Interface kinetics coefficient
ay/a, Gradient energy coefficient associate to ¢ /c

M Diffusion mobility
A Free energy curvature
D, Diffusion coefficient
L Normalised equilibrium coefficient for liquid state
w Height of double well potential

Table 1.1: Parameters in the phase field corrosion model [18,29].

sufficient to approximate the energy contribution from the diffuse interface; thus for simplicity a, = 0 is often assumed. The
parameters L and M are the interface kinetics coefficient and the diffusion mobility for mass transport. The latter can be evaluated

as a constant value,

D

M==, 3

A 3
where D, the Fick’s diffusion coefficient and A is the free energy curvature, assumed to be the same for both the solid and liquid
phases.

The governing equations of the generic phase field model, (1)-(2), are finally specified by choosing a suitable expression

for the free energy f(¢,c): [0,1]* — R. For simulating the pitting corrosion in dilute solution, and looking at each point as a
mixture of two phases with different concentration but same potential, the following expression has been considered in [27,29]

fl¢,0)=Alc—h(¢p)A—c)—c,)* +wg(¢), hg:[0,1]—=R @)

where ¢; € R is a normalised equilibrium concentration for the electrolytic solution, h is an infinitely differentiable and
monotonically increasing function interpolating h(0) = 0 and h(1) = 1, g is a double well potential function, and w is a real
number. As in [29], we set h(¢) = —2¢> + 3¢ and g(¢) = $p2(1—¢)>.

Substituting (3) and (4) in (1)-(2), and defining,

Dy=Las,  Fi(¢,0)=—L(2A(c, —Dlc—h(¢)(1—c;)—c;Jn () +wg'(9)),  Foldp)=—(1—c)h(¢$), 5)
yields the system of parabolic PDEs,

2 (x,0) =Dy 89 +F1(9,0) ©

000 = DAL +E(9)) %

associated with suitable initial data and boundary conditions of Dirichlet or Neumann type.

All parameters introduced in the model are collected in Table 1.1 together with their physical interpretation.

The implicit treatment of the interface dynamics is a clear advantage of phase field models, as it avoids to explicitly detect
the moving interface configuration within a finite element or finite difference implementation. However, this clashes with
the high computational cost for the numerical solution of these models on large spatial domains and long integration time.
Efficient numerical schemes for solving the phase field model for pitting corrosion in [29] based on a finite difference and finite
elements space discretization, respectively, coupled with an exponential method in time have been proposed in [18] and [19]. In
this paper we introduce a MATLAB implementation of this method that further improves its efficiency and enormously reduces
the computational costs for the solution of proposed test experiments. The algorithm relies on the use of a MATLAB function
described in [32,33] that uses Krylov subspaces of adapted dimension for the computation of the effect of an exponential matrix
of vectors. The implementation suggested in [18] uses instead a function in the well-known Expokit package [35] that uses
Krylov subspaces of fixed dimension.

With these premises, the paper is organised as follows. In Section 2 we describe the numerical scheme in [18] for the
phase-field model (6)-(7). The MATLAB programs for the solution of the scheme and for the graphic visualization of the solution
are presented in Section 3. The proposed implementation is used for the solution of two benchmark problems in Section 4 and its
efficiency is tested. Final remarks are presented in Section 5.

2 Numerical scheme

When the parameters in equations (6)—(7) are calibrated in order to accurately simulate realistic situations, the values of the
diffusion coefficients D, and D, are typically several order of magnitude smaller than the reaction term F; in (6). This implies
that equation (6) is extremely stiff and conventional time integrators, such as the backward differentiation formula, require
extremely small time steps to converge.

For this reason, we consider here the second-order accurate numerical method in [18], based on a finite difference space
approximation coupled with an exponential Rosenbrock-Euler method in time. The use of the exponential method allows for the
solution of the system with relatively large time steps. However, it requires the calculation of large sparse matrix exponentials
that can be computationally very demanding. Nevertheless, since only equation (6) is stiff, then the exponential method can be
used only for the solution of this equation, whereas a cheaper classic midpoint method can be used for the time integration of
equation (7). Further computational savings are achieved by decoupling the two equation.
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2.1 Space discretization
Let us consider a rectangular domain in a two dimensional space, @ = [0, L, ] x [0, L, ] and a uniform mesh defined by the nodes
x; ;= (x;,¥;) = ({Ax, jAY), i=0,....,m.+1, j=0,...,m,+1.
We establish the following order relation between the nodes:
(xip yj,) < (xiy, y3,) if jy <Jo, orif jy=j, and i) <i,. (¥

Let be U; ; the approximation of a function u at the node x; ;. We consider the classical centred difference approximation of the
Laplacian,
Ui1j—2U;j+ Ui + Uijo1—2U;;+ U jn

Ax? Ay2

The matrix representation of the discrete Laplace operator above is given by

AU(x; ;) ~

M=1, 8 M, +M, 8],

where I is the identity matrix of order d, and, for z € {x, y},

-2 1 1
1 -2 1
M. = 1 . . . c Rmz Xmy
z Az2 T s . 4
1 -2 1
L 1 =2
if Dirichlet boundary conditions are assigned, or
r—2 2 1
1 -2 1
M., = 1 . . . € RM XM
z Az2 . . . 4
1 -2 1
L 2 =2

if Neumann boundary conditions are assigned.

Let ®(t) and C(t) denote the vectors in R™™ of the approximations of ¢ (x,t) and of c(x, t), respectively, at the nodes.
These are ordered as entries of these vectors according to the ordering in (8). In other words, ®;(t) & ¢ (X, 41, Yq4+1,t), and
C;(t) ~ c(X; 41, Yq41, t), where q and r are the quotient and the residual in the division (i —1)/m,, respectively. If the boundary
conditions are homogeneous the semidiscretization of model (6)-(7) is given by

®
fl—t =D, M% +F,(®,C), ©)
i—f =D.M(C + Fy(®)). (10)

Otherwise, for z € {¢, ¢, F,}, we denote with A, = A,(t) the vector including the contributions given by the boundary values of
function z in the diffusion terms. These are sparse vectors whose i-th entry is zero if i = m,q+r+1 with0 <r <m, —1 and
0 <q <m, —1, since in this case the node (x, 1, y,41) is an internal grid point. Otherwise, the i-th entry of A,(t) depends on
the value of function z at the boundary node (x,.;, y,.1) at time t. The semidiscrete model is in this case,

z;f =Dy (M®+2,)+F,(2,0), an
(jl_f =D, (M(C +Fy(®)) + A+ Ag,). -

In equations (9)-(10) and (11)-(12), functions F; and F, are defined according to (5) and act entry-wise on vector arguments.
Depending on the metal morphology the finite difference semidiscretization needs to be modified in order to apply the
boundary conditions at suitable interface nodes.

2.2 Time discretization

We first define the exponential Rosenbrock-Euler method considering a generic autonomous system of ODEs,

du(t
YO _pue),  wo =, wer,
where F is a regular function. Exponential integrators are based on a splitting of function F such that
du(t
O ) @)+ 6D, ety t] a3)
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where t, , =t, +At, J, = ag—S’) |u=u(c,) is the Jacobian matrix, and G = F —J,,.

Applying the variation-of-constant formula to (13), yields
At
u(t,q) = e u(t,) + J e AIGu(t, + 1)) dr.
0
The exponential Rosenbrock-Euler method is then obtained by approximating G(u(t, + 7)) = G(u(t,)) for T € [0, At], and gives
the approximation
u™ = el Ayt + At (J,A)G(UM), (14)

where ¢,(z) = z7}(e* — 1). Method (14) can be equivalently written in the form
u™ =u" + At (J,A)F(u"). (15)

The numerical method in [18] relies on a variable splitting approach where formula (15) is applied only to the stiff equation (9),
whereas a low-cost implicit scheme is used to approximate equation (10).

Let be ¢™ and c" the vectors of the approximations to ¢ (x, t,) and to c(x, t,), respectively, with t, = nAt and At a fixed
stepsize.

By combining Rosenbrock-Euler method to solve equation (9) with the implicit midpoint method to solve equation (10), the
fully discrete scheme in [18] amounts to

OF
¢n+1 :¢n +Af(pl(JnAt)(D¢M¢n +F1(¢n’én+1/2))7 Jn — D¢M + a_(bl(d)Tl’éTHl/Z)’ n>1

Cn+l+cn n+1+ n
c”“:c”+AtDCM( 2 +F2(¢ 2¢ ,

where the value "*'/2 is given by the extrapolation
g1z = 3eny Lot (16)
2 2
As these formulae define a two-step method, an initialization procedure is needed. Approximations at time t; are obtained from
OF
¢1 = ¢0 + A“P1(J0At)(D¢M¢O + F1(¢O,CO)), Jo=Dg M+ 3_(]51(¢O’ ),

' =c®+AtDM(c' +F,(¢1)),

where ¢° and c° are given by the initial conditions. The scheme so defined is second-order accurate.
When the boundary conditions are non-homogeneous but independent of time, the time discretization of equations (11)-(12)
is given by

OF

¢n+1 :d)n +At(ﬂ1(JnAt)(D¢(M¢n + 7(,¢)+F1(¢n,én+1/2)), Jn — D¢M + a_d)l((pﬂ’énJrl/Z)’ n>1 a7
n+1 n n+1 n
c"+1:c”+AtDC(M(C 2+C +F2(¢ 2+¢ ))+AC+AF2), (18)
¢t =%+ At (JoA)Dy(MP® +244) + F(¢°,¢),  Jo=DyM+ Z—g(w,c‘)), (19)
' =c®+AtD, (M (' +F, (') + A+ 7). (20

The decoupling of the governing equations is a key point for the efficient solution of system (17)-(20). In fact, it allows solving
first equation (17) (or (19)) to calculate ¢"*!. Subsequently, this value can be substituted in (18) (resp. (20)) that reduce to a
linear system yielding the values of c"*!.

3 MATLAB implementation

The definition of a MATLAB efficient algorithm relies on efficient techniques to evaluate function ¢, in (17) and (19) and to solve
the linear systems given by (18) and (20).

In this section we describe the MATLAB implementation of scheme (17)-(20), reporting the codes used to evaluate, analyse
and visualize the approximate solutions.

3.1 Main program

We first describe the main program, pitcorr.m, focusing on input and output parameters and on the auxiliary functions for its
implementation.
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Input parameters

* Lx, Ly - double scalars
Endpoints defining the domain of integration = [0, Lx] x [0, Ly].

e T - double scalar
Endpoint of the time integration interval t € [0, T].

* mx, my, N - double scalars
Number of internal nodes along x, y and t dimension, respectively.

e f - function handle
Function that defines the diffusion coefficients D, and D, and the functions F; and F, in (6) and (7). It computes also the
boundary values of F, and the Jacobian matrix of F;.

* phiapp - string
String with name of the function that computes Aty,(J,At) in equation (17) (and similarly in equation (19) for n = 0).
It must be either phiapp = ‘phiv’ or phiapp = ‘expmvp’.

* initbound - function handle
Function that returns the initial and boundary values and the diffusion matrices M in equations (17)-(20).

Output parameters

e phi,c - double matrices
Matrices of dimension (mx - my) x (N + 1) with the approximations of ¢ and c, respectively, at every x € Q and t € [0, T].

¢ X,Y - double matrices
Matrices of dimension my x mx defining the spatial grid.

* t - double array
Vector of the time nodes having dimension N + 1.

The two matrices phi and c of the numerical solution are such that ¢; ; & ¢(x,11, Y441, tj—1) and ¢; ; & c(X,41, Yq11, tj—1), Where
g and r are the quotient and the residual, respectively, in the division (i —1)/m,. In other words, the j-th column is the vector
with the approximations at time t;_; ordered according to (8).

Auxiliary functions

In [18] the package Expokit [35] is used to compute the action of a matrix exponential on a vector. In this paper we consider
two different functions to evaluate the effect of function ¢, on a vector:

e phiv.min the package Expokit [35];
* expmvp.mand expmnorm.m in [32,33].
Function phiv takes as input a double scalar t, a double matrix J, and two double vectors v and u, and returns

z = exp(tJ)v + to,(tJ)u. 21

Function expmvp, instead, takes as input a double scalar t, and two double matrices J and W with columns W}, j =1,...,N,
and it returns

z = exp(tJ)W, + to,(tNI)W, + At2 0, (LW, + ...+ tV oy (t))Wy, (22)

where the functions ¢,, n > 1 are defined as in [32, 33].

Both these functions do not compute the matrix exponential in isolation but directly its action on the operand vectors, and
the calculations involve matrix-vector products only (matrix-free methods). The effect of function ¢; on a vector is equivalently
calculated by solving linear ODEs by means of adaptive time-stepping technique combined with a Krylov subspace approach.

The crucial difference between the two algorithms is that in phiv.m the size of the Krylov subspace is fixed, by default
to thirty, whereas in expmvp.m the dimension of the Krylov subspace is adapted following the approach in [23]. Function
expmvp.m is to be used in combination with expmnorm.m, a function that computes the matrix exponential using the scaling
and squaring algorithm with a Padé approximation in [22]. It is equivalent to the MATLAB inbuilt function expm.m, except that
the norm of the matrix to exponentiate is also an output, and this prevents to recompute the norm inside expmvp.m. Both
expmvp.m and expmnorm.m can be downloaded from Niesen webpage .

For efficiently solving the linear systems given by (18) and (20) we use the MATLAB inbuilt functions:

* bicgstab.m;
* bicgstabl.m.

Both these two functions implement a biconjugate gradients stabilized method. Function bicgstab has been used to solve
the pitting corrosion problem already in [18]. Function bicgstabl has been introduced more recently to prevent stagnating
situations where bicgstab does not converge. Both functions take as input a double matrix A a double array b and a double
scalar tol. The double output command [x,flag]=bicgstab(A,b,tol), returns the solution of Ax=b with tolerance tol,
and a flag that specifies whether the algorithm successfully converged. The single output command x=bicgstab(A,b,tol)
instead displays diagnostic messages that may slow down the iterations.

The main program, pitcorr.m, takes as input two further functions that must be defined by the user:

“http://wwwl.maths.leeds.ac.uk/~jitse/software.html
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* initbound.m
Input parameters

- Lx and Ly - double scalars

Endpoints defining the domain of integration 2 = [0, Lx] x [0, Ly].
- mx and my - double scalars
Number of internal nodes along x and y dimension, respectively.
dx and dy - double scalars
Step size along x and y dimension, respectively.
— x and y - double arrays

Vectors of the internal nodes along x and y dimension, respectively.

Output parameters

— BoundVal - double matrix;
Matrix BoundVal = [Boundxphi Boundyphi Boundxc Boundyc] with dimension (mx -my) x 4. The entries
of the first column, Boundxphi, are zero if the corresponding node (x, y) is not adjacent to the bottom or top side
of the boundary, i.e. if y ¢ {Ay,L, — Ay}. Otherwise, the value is given by the boundary value of ¢ at the adjacent
point on the boundary, i.e., ¢(x,0,t) or ¢(x, L, t), respectively. The second column, Boundyphi, is defined in a
similar way by considering the left and right side of the boundary instead, so interchanging the roles of x and y.
The last two columns, Boundxc and Boundyc, are defined analogously for the boundary values of c.

— Mphi and Mc - double matrices;
Diffusion matrices Mphi and Mc that may not coincide if ¢ and ¢ do not satisfy boundary conditions of the same
type (Dirichlet/Neumann) on the entire boundary. However, usually this is not the case and Mphi and Mc typically
coincide.

- phiO and cO - double arrays;
Vectors with the initial values of ¢ and c, respectively, at the internal nodes.

e f.m
Input parameters

— phi and c - double arrays;
Vectors with last computed approximations of ¢ and c, respectively.
— dx and dy - double scalars;
Step size along x and y dimension, respectively.
— BoundVal (optional) - double matrix;
Matrix with boundary values of ¢ and ¢ obtained from initbound.m.

Output parameters - Four-input option

— F1 - double array;

Vector of the reaction function F; computed on phi and c given in input.
— dF1 - double matrix;

Jacobian matrix dF,(¢,c)/d ¢ calculated on phi and c.
— Dcoeff - double array.

Vector of the two diffusion coefficients D¢ and D, in equations (6)—(7).

Output parameters - Five-input option

- F1 - double array;

Vector of the diffusion function F, computed on phi given in input.
— dF1 - double array;

Jacobian matrix, dF,(¢)/d ¢, calculated on phi.

Note that the main program described so far can be used to solve any problem in the form (6)-(7) with generic definitions
of functions F; and F,. In fact, these must be returned by the user-defined function f .m. In Section 4 we solve a couple of
test examples considering the definitions in (5).

Description of the main program

The main program of the algorithm, pitcorr.m, is illustrated in Figure 3.1.

The first part of the code (lines 5-7) computes the space-time grid and initializes the unknown matrices. Subsequently (line
11), function initbound sets the boundary conditions, the diffusion matrices, and the initial data. The boundary values are
then used (lines 12-13) to define the vectors 4, and A, in (17)-(20).

The next blocks of instructions solve equations (19)-(20) and, in a for loop, (17) and (18) until reaching the final time, T.

First, function f .m is used to define function F,, its Jacobian and the diffusion coefficients in (6)-(7).

Depending on the value of phiapp (see lines 20-24), function phiv or expmvp is used to compute the effects of function ¢,
on the operand vectors given in equations (19) and (17). The right hand side of (19) is computed either by using phiv (see
equation (21)) with input the time step dt, the Jacobian matrix J, and the two vectors

VZO: u:D¢(M¢O+A¢)+F1(¢OscO):
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1 function [phi,c,X,Y,t] = pitcorr(Lx,Ly,T,mx,my,N,f, phiapp,initbound)
2
3 % Grid and initialization
4
5 x = linspace(0,Lx,mx)’; y = linspace(0,Ly,my)’; t = linspace(0,T,N); [X,Y] = meshgrid(x,y);
6 dx = Lx/(mx—1); dy = Ly/(my—1); dt = T/(N—1);
7 phi = zeros(mx*my,N); ¢ = zeros(mx*my,N);
8
9 % Initial and boundary conditions
10
11 [BoundVal,Mphi,Mc, phi(:,1),c(:,1)] = initbound (Lx,Ly,mx,my,dx,dy,x,y);
12 lambdaphi = BoundVal(:,1)/dy"2+BoundVal(:,2)/dx"2;
13 lambdac = BoundVal(:,3)/dy"~2+BoundVal(:,4)/dx"2;
14
15 % Solving equation (19)
16
17 [F1,dF1,Dcoeff] = f(phi(:,1),c(:,1),dx,dy);
18 u = Dcoeff(1)*(Mphi*phi(:,1)+lambdaphi)+F1;
19 J = Dcoeff(1)*Mphi + dF1;
20 if stremp (phiapp, ‘expmvp’)
21 phi(:,2) = phi(:,1)+expmvp(dt,J,[ sparse(zeros(size(u))),ul);
22 elseif stremp(phiapp, ‘phiv’)
23 phi(:,2) = phi(:,1)+phiv(dt,J,u,sparse(zeros(size(u))));
24 end
25
26 % Solving equation (20)
27
28 Asys = speye(size (Mc))—dt*Dcoeff(2)*Mec;
29 [F2,lambdaF2] = f(phi(:,2),c(:,1),dx,dy,BoundVal);
30 bsys = c(:,1)+Dcoeff(2)*dt*(Mphi*F2+lambdaF2+lambdac);
31 [c(:,2),~] = bicgstab (Asys,bsys,le—13);
32 Asys = speye(size (Mc))—dt*Dcoeff(2)/2*Mc;
33
34 for k = 3:N
35
36 % Solving equation (17)
37
38 chat = 3/2%c(:,k—1)—1/2*c(:,k—2);
39 [F1,dF1] = f(phi(:,k—1),chat,dx,dy);
40 J = Dcoeff(1)*Mphi + dF1;
41 u = Dcoeff(1)*(Mphi*phi (:,k—1)+lambdaphi)+F1;
42 if stremp (phiapp, ‘expmvp’)
43 z = expmvp(dt, J, [sparse(zeros(size(u))), sparse(u)]);
44 elseif strecmp (phiapp, ‘phiv’)
45 z = phiv(dt, J, u, sparse(zeros(size(u))));
46 end
47 phi(:,k) = phi(:,k—1)+z;
48
49 % Solving equation (18)
50
51 [F2,lambdaF2] = f((phi(:,k)+phi(:,k—1))/2,chat,dx,dy,BoundVal);
52 bsys = c(:,k—1)+Dcoeff(2)*dt*(Mc*c (:,k—1)/2+Mphi*F2+lambdac+lambdaF2);
53 [c(:,k),~] = bicgstab (Asys,bsys,1e—13);
54
55 end

Figure 3.1: Main program pitcorr.m
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or, otherwise (see equation (22)), by expmvp evaluated on the stepsize, dt, the Jacobian matrix J, and the two-column matrix
[0,ul,  u=Dg(M¢°+2A,)+F(¢%c").

Lines 28-30 define the linear system in equation (20) that yield the values of c'. To solve it we use (line 31) function bicgstab
with tolerance 107'3, using the double output command without storing the flag value.
Before entering the for loop, the coefficient matrix for solving the linear systems in (18) is defined once for all in line 32.
The extrapolated value ¢"*'/2 in equation (16) is calculated in line 38. The following lines calculate iteratively the approxim-
ations of ¢ and c at each time step similarly as described in lines 17-31, by only modifying the formulae in lines 39, 51 and 52 to
be in agreement with the right hand side of equations (17) and (18).

3.2 Supplementary programs

We describe here some programs that can be useful for the graphical representation and investigation of the solutions obtained
from the main program, pitcorr.m, or as an alternative when memory limits prevent to store the solutions at every time step.
All the auxiliary MATLAB functions used in the main or supplementary programs are listed in Table 3.1.

pitcorr2.m

A critical issue when solving pitting corrosion problems on large spatial domain and long integration times, is that a large number
of nodes needs to be introduced and matrices phi and ¢ may exceed MATLAB maximum array size preference, causing MATLAB to
be unresponsive. To deal with these situations, we propose here an alternative program, pitcorr2.m in Figure 3.2, that does
not store the solution at every time step, but it returns only the solution at the initial and final time. In this case, the size of the
output matrices phi and c is (mx - my) x 2. The program can be suitably modified to store the solution at an arbitrary number
of time steps.

pit_anim.m

For visualizing graphically the solutions calculated by pitcorr.m, we propose here the program pit_anim.m in Figure 3.3.
This function takes as input arguments, respectively, the space grid X, Y, the vector of the time nodes t, a solution matrix phi
and an optional scalar parameter rec.

The solution matrix phi in input can be either a two-column matrix with the approximations of ¢ and c at the final (or a
specific) time, respectively, or the full solution phi (or c) at every time step returned by pitcorr.m.

In the first case, function pit_anim.m creates two figures with the 2D graphs of ¢ and c at the final (or prescribed) time.
The columns of the matrix phi are reshaped into matrices having the same size of the computational grid (lines 5-6). The
graphs are created by using the command surf (lines 7 and 9). Colours may be personalized by changing the argument of
colormap. The option shading interp applies a piecewise bilinear shading, where the colour in each patch varies linearly
and interpolates the corner values. The commands view(2) and axis equal in lines 8 and 10, set the default 2D view and the
aspect ratio of the axes, respectively.

If the matrix phi includes instead the approximations of ¢ (or c¢) at each time step, an animation showing the evolution of
the solution at every k-th step is displayed. The value of k is given by the integer variable ‘step’ (line 14). The animation is
created by displaying a sequence of graphs of the solutions at different stages, generated in a for loop (lines 21-33). The time
interval between two consecutive frames is the computation time plus 0.1 sec (line 29). The graph of the solution at the final
time is shown at the end also when k does not divide the number of time iterations (line 21).

If the optional input parameter rec = 1, then this animation is recorded in a video, “myvideo.avi”, saved in the MATLAB
current folder.

pitdepth.m

Program pitdepth.m in Figure 3.4 tracks the advance of the lowest descending pitting front above a certain height, H_;,. It is
assumed that the pit either has a circular shape or it is the whole top edge (see examples in Section 4). This function takes as
input the space grid, X, Y, the time nodes, t, the solution matrix, phi (or c), returned by pitcorr.m, and a double array, pit,
with three entries: the height of the pit at the initial time, its radius, and the value H;, (line 4 in Figure 3.4). In the case of a
circular pit, the initial height is intended as that of its center, and in the case of the corrosion of the whole edge, the radius must
be set equal to zero. As an output it returns a double array, ypit, having as entries the location of the advancing pit at every
time step.

The entries of ypit are computed by measuring the depth of the lowest point higher than H;, on the contour line
corresponding to ¢ = 0.5 (line 15). The contour line is calculated by using function contour (see line 8). To prevent the return
of an empty set, the contour lines for ¢ =0 and ¢ =1 are also computed assuming that there is at least one point in the solution
that is totally in the liquid or solid phase, as is usual. The output h is a handle to the contour object. In line 9 this is an input to
function getContourLineCoordinates [15] that extracts in a table the (x, y) coordinates from contour lines organised by
contour level and group. The table is converted into a matrix, M, and the ordinates of the points of the contour line for ¢ = 0.5
are isolated in the array A (see lines 10 and 11).

At the very first time steps, if the spatial grid is not fine enough, it is possible that the corrosion front has not reached any grid
point yet or that there is no node where the corrosion level ¢ = 0.5 has been reached yet. In these cases, we approximate the
location of the advancing front as its initial value (line 13).

At the end, in lines 18-19, a plot showing ypit against 4/t is produced.
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function [phi,c,X,Y,t] = pitcorr2(Lx,Ly,T,mx,my,N,f,phiapp,initbound)
% Grid and initialization

x = linspace(0,Lx,mx)’; y = linspace(0,Ly,my)’; t = linspace(0,T,N); [X,Y] = meshgrid(x,y);
dx = Lx/(mx—1); dy = Ly/(my—1); dt = T/(N-1);
phi = zeros(mx*my,2); ¢ = zeros(mx*my,2);

% Initial and boundary conditions

[BoundVal ,Mphi,Mc, phi(:,1),c(:,1)] = initbound (Lx,Ly,mx,my,dx,dy,x,y);
lambdaphi = BoundVal(:,1)/dy”~2+BoundVal(:,2)/dx"2;
lambdac = BoundVal(:,3)/dy”~2+BoundVal(:,4)/dx"2;

% Solving equation (19)

[F1,dF1,Dcoeff] = f(phi(:,1),c(:,1),dx,dy);
u = Dcoeff(1)*(Mphi*phi(:,1)+lambdaphi)+F1;
J = Dcoeff(1)*Mphi + dF1;
if stremp (phiapp, ‘expmvp’)

phi(:,2) = phi(:,1)+expmvp(dt,J,[ sparse(zeros(size(u))),ul);
elseif strcmp (phiapp, ‘phiv’)

phi(:,2) = phi(:,1)+phiv(dt,J,u,sparse(zeros(size(u))));
end

% Solving equation (20)

Asys = speye(size (Mc))—dt*Dcoeff (2)*Mc;

[F2,lambdaF2] = f(phi(:,2),c(:,1),dx,dy,BoundVal);

bsys = (c(:,1)+Dcoeff(2)*dt*(Mphi*F2+lambdaF2+lambdac));
clast = c(:,1);

[c(:,2),~] = bicgstab (Asys,bsys,1e—13);

Asys = speye(size (Mc))—dt*Dcoeff(2)/2*Mc;

for k = 3:N
% Solving equation (17)

chat = 3/2%c(:,2) —1/2*clast;
[F1,dF1] = f(phi(:,2),chat,dx,dy);
J = Dcoeff(1)*Mphi + dF1;
u = Dcoeff(1)*(Mphi*phi(:,2)+lambdaphi)+F1;
if stremp (phiapp, ‘expmvp’)
z = expmvp(dt, J, [sparse(zeros(size(u))), sparse(u)]);
elseif stremp (phiapp, ‘phiv’)
z = phiv(dt, J, u, sparse(zeros(size(u))));
end
philast = phi(:,2);
phi(:,2) = phi(:,2)+z;

% Solving equation (18)

[F2,lambdaF2] = f((phi(:,2)+ philast)/2,chat,dx,dy,BoundVal);

bsys = c(:,2)+Dcoeff (2)*dt*(Mc*c(:,2)/2+Mphi*F2+lambdac+lambdaF2);
clast = c(:,2);

[e(:,2),~] = bicgstab (Asys,bsys,1e—13);

end

Figure 3.2: Main program pitcorr2.m
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1 function pit_anim(X,Y,t,phi,rec)
2
3 mx = size(X,2); my = size(X,1);
4 if size(phi,2)== % Graphs of the solution at final time
5 p = reshape(phi(:,1),[mx,my]) ’;
6 q = reshape(phi(:,2),[mx,my])’;
7 figure, surf(X,Y,p), colormap(jet), shading interp
8 view (2), axis equal, xlim ([X(1),X(end)]), ylim([Y(1),Y(end)])
9 figure, surf(X,Y,q), colormap(jet), shading interp
10 view (2), axis equal, xlim([X(1),X(end)]), ylim([Y(1),Y(end)])
11 else % Animation
12 if nargin = 4, rec = 0; end
13 N = length(t);
14 step = round ((N—1)/30); % Frame frequency.
15 if rec =1
16 set(gef, ’Color’,’white’)
17 vidObj = VideoWriter (’myvideo.avi’);
18 vidObj. Quality = 100; vidObj.FrameRate = 10;
19 open(vidObj);
20 end
21 for j = 1:step:ceil ((N—1)/step)*step+1l % If step does not divide N—1 the view
22 % of the solution at final time is forced
23 i = min(j,N);
24 q = reshape(phi(:,i),[mx,my])’;
25 surf(X,Y,q), colormap(jet), shading interp
26 set(gca, ’Fontsize’,14), xlabel(’x’), ylabel(’y’)
27 view (2), axis equal, xlim([X(1),X(end)]), ylim([Y(1),Y(end)])
28 title (sprintf(’Solution at t = %.2f" ,t(i)));
29 pause(0.1)
30 if rec =1,
31 writeVideo (vidObj, getframe(gecf));
32 end
33 end
34 if rec =1,
35 close(gcf), close(vidObj);
36 end
37 end

Figure 3.3: Function pit_anim.m

4 Numerical experiments

In this section we test the codes discussed in Section 3 considering two different problems and using MATLAB R2020b on a

Windows desktop computer with a eight-core Intel 3.8 GHz Processor and 15.7 GB Memory.

We consider the pit corrosion problem (6)-(7) with functions F; and F, given in equation (5). The values of the parameters

in equations (6)—(7) are set as in [18,29], and are summarised in Table 4.1.

With these parameters, Dy ~ 6.01 - 107°, whereas —2AL(c; — 1) ~ 2.06 - 10° and —Lcw ~ —4.16 - 10°. The very large order of

magnitude of the ratio between the reaction term and the diffusion term in (6) makes the equation very stiff, justifying the use of

an exponential method for its solution.

This problem is here solved by using the main program pitcorr.m with input f=fcorr illustrated in Figure 4.1 to set the

parameters and functions at the right hand side of equations (6)-(7) and their derivatives.

Pencil electrode test

The first problem is a variant of the pencil electrode experiment in [17,18,29]. The specimen is a 300 um long stainless steel
(304 SS) with diameter d = 25um. The specimen is wrapped in an epoxy resin with only the top and bottom ends exposed to an
electrolyte solution. This configuration is modelled by setting ¢ = ¢ = 0 at the top and bottom edge of the boundary, whereas
homogeneous Neumann boundary conditions are assigned along the rest of the boundary. We assume that at the initial time the
specimen has not yet been attacked by corrosion anywhere, so we assign constant initial conditions c® = ¢° =1 at all internal

nodes.

We define a uniform grid with resolution Ax = Ay = 1um= 10"° on Q = [0,25-107°] x [0,300- 107°] and a time step

At = 1072 to integrate till the final time T = 1.
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1 function ypit=pitdepth(X,Y,t,phi, pit)
2
3 mx = size(X,2); my = size(X,1); N = length(t); ypit = zeros(1,N);
4 pitloc = pit(1l);pitrad = pit(2);Hmin=pit (3);
5 ypit(1l) = pitloc—pitrad;
6 for i = 2:N
7 q = reshape(phi(:,i),[mx,my])’;
8 [~, h] = contour(X, Y, q, [0,0.5,1]);
9 contourTable = getContourLineCoordinates(h);
10 M = contourTable {:,:};
11 A= (M(:,1) = 0.5).*M(:,end);
12 if isempty(min(A(A > Hmin)))
13 ypit(i) = ypit(1);
14 else
15 ypit(i) = min(A(A > Hmin));
16 end
17 end
18 plot(sqrt(t(l:end)), pitloc—ypit(l:end))
19 set(gca, 'Fontsize’,14), xlabel(’$\sqrt{t}$’, Interpreter’,’latex’), ylabel(’Pit depth’)
Figure 3.4: Function pitdepth.m
Function Calling program Scope
phiv [35] pitcorr/pitcorr2 Effect of ¢, on vectors using Krylov subspaces of fixed dimension
expmvp [32,33] pitcorr/pitcorr2 | Effect of ¢, on vectors using Krylov subspaces of adapted dimension
bicgstab/bicgstabl pitcorr/pitcorr2 Biconjugate gradients stabilized method to solve linear systems
VideoWriter pit_anim Constructs a VideoWriter object to write video data to an AVI file
writeVideo pit_anim Write video data to file
getframe pit_anim Returns a movie frame that is a snapshot of current axes
colormap pit_anim Sets the current figure’s colormap
shading interp pit_anim Piecewise bilinear shading that linearly interpolates corner values
contour pitdepth Returns contour matrix and a handle to a contour object
getContourLineCoordinates [15] pitdepth Extracts coordinates from contour lines created by contour plots

Table 3.1: Auxiliary MATLAB functions.

Parameter Value
L 2
A 5.35-107
c ~3.57-1072
w ~2.08-10°
ay ~3.01-10°°
D, 8.50-1071°

Table 4.1: Parameters values in the phase field corrosion model [18,29].

Implementation details

This problem is solved by running script test_example_1 in Figure 4.2. Lines 5-6 define the space-time domain and the
computational grid. In line 10 we define the string phiapp that sets the function used to evaluate function ¢, on vectors. We
consider the two options phiapp = ‘phiv’ and phiapp = ‘expmvp’.

In line 14 the initial and boundary values are assigned to pitcorr by function initbound_1 in Figure 4.3. The initial
conditions are assigned in lines 11-12 of Figure 4.3. Boundary conditions of Dirichlet or homogeneous Neumann type are defined
by a cell vector with eight entries. The first four entries define the boundary conditions for ¢ on the bottom, left, top and right
side, respectively. The last four entries define the boundary conditions for ¢ in a similar way. Each cell defines either a Dirichlet
boundary condition specified by a function of x (or y) or a homogeneous Neumann boundary condition if empty. In Figure 4.3
(lines 16-17) the boundary conditions in the cell array BC are of homogeneous Dirichlet type on the bottom and top edge, and of
homogeneous Neumann type on the vertical edges for both ¢ and c, to model the configuration of the problem described above.
However, by modifying array BC or the initial conditions, phi0O and cO, this function can be used to solve different problems on a
rectangular domain. The rest of the code computes the diffusion matrices and the boundary values accordingly. The program can
be easily adapted to deal with non-homogeneous Neumann boundary conditions.
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function [F1,dF1,Dcoeff] = fcorr(phi,c,dx,dy,BoundVal)
% Parameter and function defining F,
cL = 5.1/143; h = @(phi) (—2*phi.”3+3*phi."2);
if nargin > 4
% Diffused function F, and boundary terms
F1 = —h(phi)*(1—cL);
dF1 = —(h(BoundVal(:,1))*(1—cL)/dy"~2+h(BoundVal(:,2))*(1—cL)/dx"2);
else
% Parameters
L=2; A= 5.35e7;
alphaphi = 10*5e—6/(2.94*4*sqrt (2));
omega = 100/(16*alphaphi);
Dc = 8.5e—10;
Dcoeff = [L*alphaphi,Dc];
% Functions defining F, and derivatives
dh = @(phi) —6*phi.”24+6*phi; ddh = @(phi) —12*phi+6;
dg = @(phi) 2*phi.*(1—phi).”~2—2*phi.”2.*(1—phi);
ddg = @(phi) 2*(1—phi).”~2—4*phi.*(1—phi)—4*phi.*(1—phi)+2*phi. " 2;
% Reaction function F; and derivative
Fl = —L*(2*A*(cL—1)*(c—h(phi)*(1—cL)—cL).*dh(phi)+omega*dg(phi));
dF1 = —L*(2*A*(cL—1)"2*dh(phi). "~ 2+...
2*A*(cL—1)*(c—h(phi)*(1—cL)—cL).*ddh(phi)+omega*ddg(phi));
mxmy=length (phi);
dFl1=spdiags (dF1,0 ,mxmy, mxmy) ;
end

Figure 4.1: Function fcorr.m

Numerical results

In test_example 1, functions tic and toc are used to measure the computation time of the algorithm. We compare the results for
the two choices phiapp = ‘phiv’ and phiapp = ‘expmvp’. Using function phiv.m, it takes 194.88 seconds to compute the
solution till the final time T = 1. If function expmvp .m is used instead, the computation time is of 25.28 seconds, which amounts
to a reduction of the 87.0%. The maximum difference between the entries of the solution matrices computed using phiv.m and
expmvp.mis 4.52- 107! for ¢ and 6.51- 107! for c, showing that although the computational cost of the two functions is very
different, the results obtained are essentially the same. Finally, we test the efficiency of function bigcstab.m compared to the
standard MATLAB backslash, ‘\’, function for the solution of the linear systems (line 31 and 53 in Figure 3.1). Using phiapp
= ‘expmvp’ and ‘\’ the computation time increases to 33.09 seconds. The maximum difference between the two computed
functions is 2.92- 1071, This shows that the use of bigcstab.m indeed speeds up the whole computation without compromising
accuracy. Using bigcstabl.m in place of bigcstab.m gives similar results. All details are summarised in Table 4.2.

We now solve the same numerical test till a longer time, T = 225. Also in this case, function expmvp.m combined with
bigcstab.mrecords the lowest computation time, 7878 seconds (see Table 4.2). In Figure 4.4 we show the solution ¢ in the
interior of the domain at four different time steps: t = 0,38,152 and 225. These graphs are equivalent to snapshots of a video
generated by pit_anim.m illustrated in Figure 3.3. The results are consistent with those obtained in [18,29] and with the
laboratory experiments in [17] where only the top side of the specimen is subject to corrosion.

Figure 4.5 shows the evolution of the pit depth calculated by function pitdepth.m in Figure 3.4 with last input argument
pit=[Ly,0,Ly/2]. The value Hnin=Ly/2 has been set to prevent ypit to take values in the lowest part of the specimen,
characterised by the presence of an ascending pit, and to actually track the descending pit only. The graph shows that the pit
depth increases linearly with the square root of time consistently with the results in [17,18,29].
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tic
% Defining domain and grid

Lx
mx

25e—6; Ly = 300e—6; T = 1;
26; my = 301; N = 1001;

% Set phiapp = ’phiv’ or phiapp = ’expmvp’
phiapp = ’expmvp’;
% Computing solution

[phi,c,X,Y,t] = pitcorr (Lx,Ly,T,mx,my,N, @fcorr, phiapp, @initbound_1);
toc

u=[phi(:,end) c(:,end)]; % Solution at the final time

pit_anim (X,Y,t,u) % Graphs of phi and c at the final time

Figure 4.2: Script text_example_1.m

Table 4.2: Computation times (sec.) for solving test_example_1 with Ax = Ay =107°, and At = 1075,

phiv.m expmvp.m
Final time bigcstab.m bigcstab.m bigcstabl.m “\’
T=1 194.88 25.28 26.57 33.09
T =225 48090.02 7878.37 8961.51 10430.29

Circular pit-growth

The second benchmark problem is the propagation of an isolated circular pit, inspired by the study of the evolution of a semi-
circular pit growth in [17,18,29]. We consider a rectangular specimen of size 400umx200um (£ = [0,400-107%]x[0,200-107°])
that at the initial time presents a circular pit with diameter 4um situated at its center point, as shown on the top left of Figure 4.8.
This setting is modelled by assigning to system (6)—(7) homogeneous Dirichlet boundary conditions on the pit surface and
homogeneous Neumann boundary conditions on the external boundary. As in [18,29] we set the same values of the parameters
as before, listed in Table 4.1.
We consider again a spatial grid defined by Ax = Ay = 1um= 107%, and solve till time T = 1 with time step At = 1075,

Implementation details

The solution of this problem is computed by the script text_example_2.m in Figure 4.6, whose description is similar to that of
text_example_1.m. In this case the initial and boundary conditions are assigned by initbound_2 in Figure 4.7.

In Figure 4.7 lines 5-12 define homogeneous Neumann boundary conditions on the external sides of the rectangular domain,
initialise the diffusion matrix Mphi by neglecting that the diffusion can not happen inside the pit at the center of the domain, and
define the computational grid in space. The rest of the code has the goal of modifying the diffusion matrix taking into account of
the zero Dirichlet boundary conditions on the pit boundary.

In line 16 the central location of the pit and its radius are established. In line 17 we fix the initial conditions by assigning
value 1 to the grid points outside the pit region and O otherwise. The initial conditions (equal for both ¢ and c) are reorganised
into column vectors in line 18.

In lines 22-33 we identify the grid nodes in the liquid phase by finding their Cartesian coordinates. We first identify the
position of these nodes in the vector x by looking at the nodes x; such that |x; —xpit| < pitrad (line 22). Then for each x; in
this interval we need to identify the ordinates of the nodes that are internal to the pit. This is done by defining the array inpit
(line 25) having entries 1 if the initial condition is O (liquid phase) or 0 otherwise (solid phase). If inpit turns out to be the zero
vector, then there are no nodes internal to the pit and an error message is displayed to suggest the use of a finer grid (see lines
27-28). Otherwise, the points in the pit are identified by a sequence of consecutive 1 entries in inpit, that can be determined by
the location of the first and last elements (lines 30-31).

The for loop in lines 38-42 identifies the position of the nodes in the pit according to the ordering (8) and casts the
corresponding indexes in the vector ind. The non diffusion inside the pit is finally forced in the diffusion matrices in lines 43-44.
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function [BoundVal,Mphi,Mc, phi0,c0] = initbound_1 (Lx,Ly,mx,my,dx,dy,x,y)

ex ones(mx,1);ey = ones(my,1);

Mx = spdiags ([ex —2*ex ex], —1:1, mx, mx)/dx"2;

My = spdiags([ey —2%ey ey], —1:1, my, my)/dy"2;
Boundxphi = zeros(mx*my,1); Boundyphi = zeros(mx*my,1);
Boundxc = zeros(mx*my,1); Boundyc = zeros(mx*my,1);

% Initial configuration

phi0 = ones(mx*my,1);
c0 = ones(mx*my,1);

% Boundary conditions

BC={ @(x) zeros(size(x)),[],@(x) zeros(size(x)),[],...
@(x) zeros(size(x)),[],@(x) zeros(size(x)),[]1};
DirBC = ~cellfun (’isempty’,BC); % 1 if Dirichlet, 0 if homogeneous Neumann

% We assume that on each side phi and c satisfy boundary conditions
% of the same type.
if DirBC(1) = 0
My(1,2) = 2/dy”™2; % Homogeneous Neumann
elseif DirBC(1) = 1
Boundxphi = Boundxphi+kron ([1;zeros([my—1,1])], BC{1}(x));
Boundxc = Boundxc+kron ([1;zeros ([my—1,1])], BC{5}(x));
end
if DirBC(2) = 0
Mx(1,2) = 2/dx"2; % Homogeneous Neumann
elseif DirBC(2) = 1
Boundyphi = Boundyphi+kron(BC{2}(y),[1;zeros([mx—1,1])]);
Boundyc = Boundyc+kron(BC{6}(y),[1;zeros([mx—1,1])]);
end
if DirBC(3) = 0
My(end,end—1) = 2/dy"2; % Homogeneous Neumann
elseif DirBC(3) =— 1
Boundxphi = Boundxphi+kron ([ zeros ([my—1,1]);1], BC{3}(x));
Boundxc = Boundxc+kron ([ zeros ([my—1,1]);1], BC{7}(x));
end
if DirBC(4) = 0
Mx(end,end—1) = 2/dx"2; % Homogeneous Neumann
elseif DirBC(4) = 1
Boundyphi = Boundyphi+kron(BC{4}(y),[zeros([mx—1,1]),;1]);
Boundyc = Boundyc+kron (BC{8}(y),[zeros([mx—1,1]);1]);
end
Iy = speye(my); Ix = speye(mx);

% Diffusion matrices

Mphi = kron(ly ,Mx)+kron(My, Ix);
Mc = Mphi;

% Vector with boundary terms

BoundVal = [Boundxphi Boundyphi Boundxc Boundyc];

Figure 4.3: Function initbound_1.m
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Figure 4.4: Configuration of ¢ given by test_example_1 at different times.
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Figure 4.5: Evolution of the pit depth in the solution computed by test_example_1

Numerical results

Using function phiv, the solution is computed in 1545.33 seconds. If expmvp is used instead, the computation time reduces
to 270.66 seconds, i.e. by about the 82.5%. The maximum difference between the two computed solutions in the whole time
interval, is 4.78 - 10712 for ¢ and 6.41 - 1072 for c. Also in this case solving the linear system using function ‘\’ instead of
bigcstab.mincreases the computation time to 394.64 seconds. The maximum difference between the solutions obtained is
2.21-107?, showing the higher efficiency of function bigcstab.m. As before, similar results are instead obtained by using
bigcstabl.min place of bigcstab.m. We summarise all computation times in Table 4.3.

As all previous tests have shown the high efficiency of expmvp .m combined with bigcstab.m, we only use this combination
of functions to compute the solution till time T = 100. In this case, the matrices phi and ¢ computed by pitcorr are too large
(80601 x 100001, requiring 60.1 GB of memory), and so we use instead pitcorr2.m in Figure 3.2 to obtain the solution at
the final time. It takes 92407 seconds to solve this problem. The solution at times t = 0, 20,40, 100 are presented in Figure 4.8
showing snapshots of a video recorded by using pit_anim.m.

Also in this case the pit depth growth is directly proportional to the square root of time as shown in Figure 4.9 and in
agreement with the results in [17,18,29]. The graph has been realised by using function pitdepth.m in Figure 3.4 with
pit=[Ly/2,4e-6,0] and it shows the pit depth evolution measured as the distance from the center of the pit for t € [0, 20].
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tic
% Defining domain and grid

Lx
mx

400e—6; Ly = 200e—6; T = 1;
401; my = 201; N = 1001;

% Set phiapp = ’phiv’ or phiapp = ’expmvp’
phiapp = ’expmvp’;
% Computing solution

[phi,c,X,Y,t] = pitcorr (Lx,Ly,T,mx,my,N, @fcorr, phiapp, @initbound_2);
toc

u=[phi(:,end) c(:,end)]; % Solution at the final time

pit_anim (X,Y,t,u) % Graphs of phi and c at the final time

Figure 4.6: Script text_example_2.m

Table 4.3: Computation times (sec.) for solving test_example_2 with T =1, Ax = Ay =107%, and At = 1073,

phiv.m expmvp.m

bigcstab.m Dbigcstab.m bigcstabl.m “\?
1545.33 270.66 274.52 394.64

5 Conclusions

In this paper we have developed an efficient MATLAB implementation for the numerical solution of a phase-field model for pitting
corrosion of a metal specimen immersed in an electrolyte solution.

Models calibrated on the basis of laboratory experiments turn out to be very stiff. For this reason it is appropriate to consider
exponential methods for their solution. We have discussed here an efficient implementation for these methods that relies on the
use of the function expmvp in [32,33]. This function computes the effect of matrix exponential functions on vectors by means
of Krylov projection methods on subspaces of adapted dimension. We have shown that this makes the algorithm much more
efficient than using the very popular function phiv in the Expokit package [35] based on Krylov subspaces of fixed dimension.

The MATLAB software has been illustrated and discussed in detail. The efficiency of the proposed procedure has been shown
considering as test examples s pencil electrode experiment and the growth of an isolated circular pit.
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function [BoundVal,Mphi,Mc, phi0,c0] = initbound_2 (Lx,Ly,mx,my,dx,dy,x,y)
% Defining diffusion matrix

BoundVal = zeros (mx*my,4);

ex = ones(mx,1);ey = ones(my,1);

Mx = spdiags([ex —2%ex ex], —1:1, mx, mx)/dx"2;
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Xpit Lx/2;ypit = Ly/2;pitrad = 4e—6;
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phio0 reshape (init ,[],1); cO = phiO;

% Finding coordinates of points in the pit
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for i = 1:length(xloc)
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ind (cont:cont+indsize —1) = mx*(ylocmin (i)—1)+xloc (i) :mx:mx*(ylocmax (i)—1)+xloc(i);
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Mc = Mphi;

Figure 4.7: Function initbound_2.m
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Solution att = 0.00 Solution at t = 20.00
Solution at t = 40.00 Solution at t = 100.00

Figure 4.8: Configuration of ¢ given by test_example_2 and pitcorr_2 at different times.
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