[1] J. A. Elemans, R. van Hameren, R. J. Nolte, and A. E. Rowan. Molecular materials by self-assembly of porphyrins, phthalocyanines, and perylenes. Advanced Materials, 18(10):1251–1266, 2006.
[2] T. Yokoyama, S. Yokoyama, T. Kamikado, Y. Okuno, and S. Mashiko. Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature, 413(6856):619–621, 2001.
[3] S. Stepanow, M. Lingenfelder, A. Dmitriev, H. Spillmann, E. Delvigne, N. Lin, X. Deng, C. Cai, J. V. Barth, and K. Kern. Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems. Nature Materials, 3(4):229–233, 2004.
[4] R. V. Hameren, P. Schön, A. M. V. Buul, J. Hoogboom, S. V. Lazarenko, J. W. Gerritsen, H. Engelkamp, P. C. Christianen, H. A. Heus, J. C. Maan, et al. Macroscopic hierarchical surface patterning of porphyrin trimers via self-assembly and dewetting. Science, 314(5804):1433–1436, 2006.
[5] H. Spillmann, A. Kiebele, M. Stöhr, T. A. Jung, D. Bonifazi, F. Cheng, and F. Diederich. A two-dimensional porphyrin-based porous network featuring communicating cavities for the templated complexation of fullerenes. Advanced Materials, 18(3):275–279, 2006.
[6] L. Grill, M. Dyer, L. Lafferentz, M. Persson, M. V. Peters, and S. Hecht. Nano-architectures by covalent assembly of molecular building blocks. Nature Nanotechnology, 2(11):687–691, 2007.
[7] F. Nishiyama, T. Yokoyama, T. Kamikado, S. Yokoyama, S. Mashiko, K. Sakaguchi, and K. Kikuchi. Interstitial accommodation of C60 in a surface-supported supramolecular network. Advanced Materials, 19(1):117–120, 2007.
[8] D. Bonifazi, A. Kiebele, M. Stöhr, F. Cheng, T. Jung, F. Diederich, and H. Spillmann. Supramolecular nanostructuring of silver surfaces via self-assembly of [60]fullerene and porphyrin modules. Advanced Functional Materials, 17(7):1051–1062, 2007.
[9] J. Beggan, S. Krasnikov, N. Sergeeva, M. Senge, and A. Cafolla.
Self-assembly of Ni(II) porphine molecules on the Ag/Si(111)-×
R30° surface studied by STM/STS and LEED. Journal of Physics:
Condensed Matter, 20(1):015003, 2008.
[10] S. A. Krasnikov, J. P. Beggan, N. N. Sergeeva, M. O. Senge, and A. A. Cafolla. Ni(II) porphine nanolines grown on a Ag(111) surface at room temperature. Nanotechnology, 20(13):135301, 2009.
[11] S. A. Krasnikov, N. N. Sergeeva, Y. N. Sergeeva, M. O. Senge, and A. A. Cafolla. Self-assembled rows of Ni porphyrin dimers on the Ag (111) surface. Physical Chemistry Chemical Physics, 12(25):6666–6671, 2010.
[12] S. Haq, F. Hanke, M. S. Dyer, M. Persson, P. Iavicoli, D. B. Amabilino, and R. Raval. Clean coupling of unfunctionalized porphyrins at surfaces to give highly oriented organometallic oligomers. Journal of the American Chemical Society, 133(31):12031–12039, 2011.
[13] S. A. Krasnikov, C. M. Doyle, N. N. Sergeeva, A. B. Preobrajenski, N. A. Vinogradov, Y. N. Sergeeva, A. A. Zakharov, M. O. Senge, and A. A. Cafolla. Formation of extended covalently bonded Ni porphyrin networks on the Au(111) surface. Nano Research, 4(4):376–384, 2011.
[14] C. Joachim, J. Gimzewski, and A. Aviram. Electronics using hybrid-molecular and mono-molecular devices. Nature, 408(6812):541–548, 2000.
[15] S. J. van der Molen and P. Liljeroth. Charge transport through molecular switches. Journal of Physics: Condensed Matter, 22(13):133001, 2010.
[16] K. Moth-Poulsen and T. Bjørnholm. Molecular electronics with single molecules in solid-state devices. Nature Nanotechnology, 4(9):551–556, 2009.
[17] C. B. Winkelmann, N. Roch, W. Wernsdorfer, V. Bouchiat, and F. Balestro. Superconductivity in a single-C60 transistor. Nature Physics, 5(12):876–879, 2009.
[18] G. Schulze, K. J. Franke, and J. I. Pascual. Resonant heating and substrate-mediated cooling of a single C60 molecule in a tunnel junction. New Journal of Physics, 10(6):065005, 2008.
[19] M. Novak, A. Ebel, T. Meyer-Friedrichsen, A. Jedaa, B. F. Vieweg, G. Yang, K. Voitchovsky, F. Stellacci, E. Spiecker, A. Hirsch, et al. Low-voltage p-and n-type organic self-assembled monolayer field effect transistors. Nano Letters, 11(1):156–159, 2010.
[20] H. Park, J. L. Park, K. L. Andrew, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen. Nanomechanical oscillations in a single-C60 transistor. Nature, 407:57–60, 2000.
[21] L. J. A. Koster, V. D. Mihailetchi, and P. W. M. Blom. Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Applied Physics Letters, 88(9):093511, 2006.
[22] M. Nakaya, S. Tsukamoto, Y. Kuwahara, M. Aono, and T. Nakayama. Molecular scale control of unbound and bound C60 for topochemical ultradense data storage in an ultrathin C60 film. Advanced Materials, 22(14):1622–1625, 2010.
[23] R. E. Smalley, H. Kroto, and J. Heath. C60: Buckminsterfullerene. Nature, 318(6042):162–163, 1985.
[24] X. Zhang, L. Tang, and Q. Guo. Low-temperature growth of C60 monolayers on Au(111): island orientation control with site-selective nucleation. The Journal of Physical Chemistry C, 114(14):6433–6439, 2010.
[25] J. A. Gardener, G. A. D. Briggs, and M. R. Castell. Scanning tunneling microscopy studies of C60 monolayers on Au(111). Physical Review B, 80(23):235434, December 2009.
[26] B. Diaconescu, T. Yang, S. Berber, M. Jazdzyk, G. P. Miller, D. Tománek, and K. Pohl. Molecular self-assembly of functionalized fullerenes on a metal surface. Physical Review Letters, 102(5):056102, 2009.
[27] H. Li, K. Franke, J. Pascual, L. Bruch, and R. Diehl. Origin of Moiré structures in C60 on Pb(111) and their effect on molecular energy levels. Physical Review B, 80(8):085415, 2009.
[28] X. Zhang, W. He, A. Zhao, H. Li, L. Chen, W. W. Pai, J. Hou, M. Loy, J. Yang, and X. Xiao. Geometric and electronic structure of a C60 monolayer on Ag(100). Physical Review B, 75(23):235444, 2007.
[29] C. Rogero, J. I. Pascual, J. Gómez-Herrero, and A. M. Baró. Resolution of site-specific bonding properties of C60 adsorbed on Au(111). Journal Chem. Phys., 116:832–836, January 2002.
[30] M. Grobis, X. Lu, and M. F. Crommie. Local electronic properties of a molecular monolayer: C60 on Ag(001). Physical Review B, 66(16):161408, October 2002.
[31] G. Schull, N. Néel, M. Becker, J. Kröger, and R. Berndt. Spatially resolved conductance of oriented C60. New Journal of Physics, 10(6):065012, 2008.
[32] G. Schull and R. Berndt. Orientationally ordered (7×7) superstructure of C60 on Au(111). Physical Review Letters, 99(22):226105, 2007.
[33] W. W. Pai, C.-L. Hsu, M. Lin, K. Lin, and T. Tang. Structural relaxation of adlayers in the presence of adsorbate-induced reconstruction: C60/Cu(111). Physical Review B, 69(12):125405, 2004.
[34] M. Abel, A. Dmitriev, R. Fasel, N. Lin, J. Barth, and K. Kern. Scanning tunneling microscopy and X-ray photoelectron diffraction investigation of C60 films on Cu(100). Physical Review B, 67(24):245407, 2003.
[35] C.-L. Hsu and W. W. Pai. Aperiodic incommensurate phase of a C60 monolayer on Ag(100). Physical Review B, 68(24):245414, December 2003.
[36] J. Weckesser, C. Cepek, R. Fasel, J. V. Barth, F. Baumberger, T. Greber, and K. Kern. Binding and ordering of C60 on Pd(110): Investigations at the local and mesoscopic scale. The Journal of Chemical Physics, 115(19):9001–9009, 2001.
[37] P. Murray, M. Pedersen, E. Lægsgaard, I. Stensgaard, and F. Besenbacher. Growth of C60 on Cu(110) and Ni(110) surfaces: C60-induced interfacial roughening. Physical Review B, 55(15):9360, 1997.
[38] Y. Li, J. Patrin, M. Chander, J. Weaver, L. Chibante, and R. Smalley. Ordered overlayers of C60 on GaAs(110) studied with scanning tunneling microscopy. Science, 252(5005):547–548, 1991.
[39] Y. Li, M. Chander, J. Patrin, J. Weaver, L. Chibante, and R. Smalley. Order and disorder in C60 and KxC60 multilayers: Direct imaging with scanning tunneling microscopy. Science, 253(5018):429–433, 1991.
[40] J. Hou, J. Yang, H. Wang, Q. Li, C. Zeng, H. Lin, W. Bing, D. Chen, and Q. Zhu. Identifying molecular orientation of individual C60 on a Si(111)-(7 × 7) surface. Physical Review Letters, 83(15):3001, 1999.
[41] J. Pascual, J. Gómez-Herrero, C. Rogero, A. Baró, D. Sánchez-Portal, E. Artacho, P. Ordejón, and J. Soler. Seeing molecular orbitals. Chemical Physics Letters, 321(1):78–82, 2000.
[42] A. Dunn, E. Svensson, and C. Dekker. Scanning tunneling spectroscopy of C60 adsorbed on Si(100)-(2 × 1). Surface Science, 498(3):237–243, 2002.
[43] C. Lu, E. Zhu, Y. Liu, Z. Liu, Y. Lu, J. He, D. Yu, Y. Tian, and B. Xu. C60 on nanostructured Nb-doped SrTiO3 (001) surfaces. The Journal of Physical Chemistry C, 114(8):3416–3421, 2010.
[44] F. Loske, R. Bechstein, J. Schütte, F. Ostendorf, M. Reichling, and A. Kühnle. Growth of ordered C60 islands on TiO2(110). Nanotechnology, 20(6):065606, 2009.
[45] A. Carvalho and J. Ramalho. Molecular simulation of C60 adsorption onto a TiO2 rutile (110) surface. Applied Surface Science, 256(17):5365–5369, 2010.
[46] S. A. Krasnikov, S. I. Bozhko, K. Radican, O. Lübben, B. E. Murphy, S.-R. Vadapoo, H.-C. Wu, M. Abid, V. N. Semenov, and I. V. Shvets. Self-assembly and ordering of C60 on the WO2/W(110) surface. Nano Research, 4(2):194–203, 2011.
[47] S. I. Bozhko, S. A. Krasnikov, O. Lübben, B. E. Murphy, K. Radican, V. N. Semenov, H. C. Wu, B. Bulfin, and I. V. Shvets. Rotational transitions in a C60 monolayer on the WO2/W(110) surface. Physical Review B, 84(19):195412, 2011.
[48] S. I. Bozhko, S. A. Krasnikov, O. Lübben, B. E. Murphy, K. Radican, V. N. Semenov, H.-C. Wu, E. A. Levchenko, A. N. Chaika, N. N. Sergeeva, et al. Correlation between charge-transfer and rotation of C60 on WO2/W(110). Nanoscale, 5(8):3380–3386, 2013.
[49] J. S. Miller and A. J. Epstein. Organic and organometallic molecular magnetic materials–designer magnets. Angewandte Chemie International Edition in English, 33(4):385–415, 1994.
[50] B. Murphy, S. Krasnikov, A. Cafolla, N. Sergeeva, N. Vinogradov, J. Beggan, O. Lübben, M. Senge, and I. Shvets. Growth and ordering of Ni(II) diphenylporphyrin monolayers on Ag(111) and Ag/Si(111) studied by STM and LEED. Journal of Physics: Condensed Matter, 24(4):045005, 2012.
[51] L. Meitner. Über die Entstehung der β-Strahl-Spektren radioaktiver Substanzen. Zeitschrift für Physik A Hadrons and Nuclei, 9(1):131–144, 1922.
[52] P. Auger. Sur les rayons β secondaires produits dans un gaz par des rayons X. Comptes Rendus de l’Académie des Sciences, 177(3):169, 1923.
[53] C. Davisson and L. H. Germer. Diffraction of electrons by a crystal of nickel. Physical Review, 30(6):705, 1927.
[54] G. Binnig and H. Rohrer. Scanning tunneling microscopy – from birth to adolescence (Nobel Lecture). Angewandte Chemie International Edition in English, 26(7):606–614, 1987.
[55] C. Doyle. An Investigation of the Structural and Electronic Properties of Covalently Bonded Molecular Networks on Metal Surfaces Formed Through Debromination Reactions. PhD thesis, Dublin City University, 2013.
[56] I. Horcas, R. Fernandez, J. Gomez-Rodriguez, J. Colchero, J. Gómez-Herrero, and A. Baro. WSxM: a software for scanning probe microscopy and a tool for nanotechnology. Review of Scientific Instruments, 78:013705, 2007.
[57] M. Blank. Example XAS spectrum showing the three major data regions [http://en.wikipedia.org/wiki/File:XASFig.jpg], September 2013.
[58] E. Stern. Musings about the development of XAFS. Journal of Synchrotron Radiation, 8(2):49–54, 2001.
[59] A. Tenderholt. Diagram showing which transitions contribute to X-ray absorption edges [http://en.wikipedia.org/wiki/File:XASEdges.svg], September 2013.
[60] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Physical Review, 136(3B):B864, 1964.
[61] C. Huang and E. A. Carter. Nonlocal orbital-free kinetic energy density functional for semiconductors. Physical Review B, 81(4):045206, 2010.
[62] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Physical Review Letters, 77(18):3865, 1996.
[63] S. Grimme. Density functional theory with London dispersion corrections. Wiley Interdisciplinary Reviews: Computational Molecular Science, 1(2):211–228, 2011.
[64] S. Grimme. Accurate description of van der Waals complexes by density functional theory including empirical corrections. Journal of Computational Chemistry, 25(12):1463–1473, 2004.
[65] U. Zimmerli, M. Parrinello, and P. Koumoutsakos. Dispersion corrections to density functionals for water aromatic interactions. The Journal of Chemical Physics, 120(6):2693–2699, 2004.
[66] S. Grimme. Semiempirical hybrid density functional with perturbative second-order correlation. The Journal of Chemical Physics, 124(3):034108, 2006.
[67] A. Tkatchenko and M. Scheffler. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett., 102:073005, Feb 2009.
[68] O. A. von Lilienfeld, I. Tavernelli, U. Rothlisberger, and D. Sebastiani. Optimization of effective atom centered potentials for London dispersion forces in density functional theory. Phys. Rev. Lett., 93:153004, Oct 2004.
[69] G. Román-Pérez and J. M. Soler. Efficient implementation of a van der Waals density functional: Application to double-wall carbon nanotubes. Phys. Rev. Lett., 103:096102, Aug 2009.
[70] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16):11169–11186, 1996.
[71] G. Kresse and J. Furthmüller. VASP: the guide, chapter 9.4 Partial occupancies, different methods. Technische Universität Wien, 1999.
[72] M. Methfessel and A. T. Paxton. High-precision sampling for Brillouin-zone integration in metals. Physical Review B, 40(6):3616–3621, August 1989.
[73] A. N. Chaika, V. N. Semenov, V. G. Glebovskiy, and S. I. Bozhko. Scanning tunneling microscopy with single crystalline W(001) tips: High resolution studies of Si(557)5 × 5 surface. Appl. Phys. Lett., 95(17):173107, 2009.
[74] A. Chaika, S. Nazin, V. Semenov, S. Bozhko, O. Lübben, S. Krasnikov, K. Radican, and I. Shvets. Selecting the tip electron orbital for scanning tunneling microscopy imaging with sub-Å lateral resolution. Europhysics Letters, 92(4):46003, 2010.
[75] D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett., 45(7):566–569, 1980.
[76] J. V. Barth. Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem., 58:375–407, 2007.
[77] J. V. Barth, G. Costantini, and K. Kern. Engineering atomic and molecular nanostructures at surfaces. Nature, 437(7059):671–679, 2005.
[78] S. M. Barlow and R. Raval. Complex organic molecules at metal surfaces: Bonding, organisation and chirality. Surface Science Reports, 50(68):201–341, 2003.
[79] F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, I. Stensgaard, C. Joachim, and F. Besenbacher. Properties of large organic molecules on metal surfaces. Progress in Surface Science, 71(5):95–146, 2003.
[80] J. Schnadt, W. Xu, R. T. Vang, J. Knudsen, Z. Li, E. Lægsgaard, and F. Besenbacher. Interplay of adsorbate-adsorbate and adsorbate-substrate interactions in self-assembled molecular surface nanostructures. Nano Research, 3(7):459–471, 2010.
[81] H. Liang, Y. He, Y. Ye, X. Xu, F. Cheng, W. Sun, X. Shao, Y. Wang, J. Li, and K. Wu. Two-dimensional molecular porous networks constructed by surface assembling. Coordination Chemistry Reviews, 253(23):2959–2979, 2009.
[82] S. A. Krasnikov, C. J. Hanson, D. F. Brougham, and A. A.
Cafolla. Dimer ordering of CuTtertBuPc molecules on the Ag/Si(111)-
×
R30° surface: A scanning tunnelling microscopy/spectroscopy
study. Journal of physics. Condensed matter, 19(44), 2007.
[83] D. Fichou. Structural order in conjugated oligothiophenes and its implications on opto-electronic devices. Journal of Materials Chemistry, 10(3):571–588, 2000.
[84] D. Bonifazi, O. Enger, and F. Diederich. Supramolecular C60 fullerene chemistry on surfaces. Chem. Soc. Rev., 36:390–414, 2007.
[85] E. Xenogiannopoulou, M. Medved, K. Iliopoulos, S. Couris, M. G. Papadopoulos, D. Bonifazi, C. Sooambar, A. Mateo-Alonso, and M. Prato. Nonlinear optical properties of ferrocene-and porphyrin–[60]fullerene dyads. Chem. Phys. Chem., 8(7):1056–1064, 2007.
[86] A. Hebard, M. Rosseinky, R. Haddon, D. Murphy, S. Glarum, T. Palstra, A. Ramirez, and A. Karton. Potassium-doped C60. Nature, 350:600–601, 1991.
[87] K. Tanigaki, T. Ebbesen, S. Saito, J. Mizuki, J. Tsai, Y. Kubo, and S. Kuroshima. Superconductivity at 33K in CsxRbyC60. Nature, 352(6332):222–223, 1991.
[88] R. C. Hiorns, E. Cloutet, E. Ibarboure, L. Vignau, N. Lemaitre, S. Guillerez, C. Absalon, and H. Cramail. Main-chain fullerene polymers for photovoltaic devices. Macromolecules, 42(10):3549–3558, 2009.
[89] M. Grobis, R. Yamachika, A. Wachowiak, X. Lu, and M. F. Crommie. Phase separation and charge transfer in a K-doped C60 monolayer on Ag(001). Physical Review B, 80(7):073410, August 2009.
[90] E. Fortunato, P. Barquinha, and R. Martins. Oxide semiconductor thin-film transistors: A review of recent advances. Advanced Materials, 24(22):2945–2986, 2012.
[91] J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, and A. Kahn. Transition metal oxides for organic electronics: Energetics, device physics and applications. Advanced Materials, 24(40):5408–5427, 2012.
[92] M. T. Greiner and Z.-H. Lu. Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces. NPG Asia Materials, 5(7):e55, 2013.
[93] H. Frenzel, A. Lajn, and M. Grundmann. One decade of fully transparent oxide thin-film transistors: fabrication, performance and stability. physica status solidi (RRL)-Rapid Research Letters, 7(9):605–615, 2013.
[94] K. Radican, S. I. Bozhko, S.-R. Vadapoo, S. Ulucan, H.-C. Wu, A. McCoy, and I. V. Shvets. Oxidation of W(110) studied by LEED and STM. Surface Science, 604(19-20):1548–1551, 2010.
[95] S. Krasnikov, S. Murphy, N. Berdunov, A. McCoy, K. Radican, and I. Shvets. Self-limited growth of triangular PtO2 nanoclusters on the Pt(111) surface. Nanotechnology, 21(33):335301, 2010.
[96] K. Radican, N. Berdunov, and I. Shvets. Studies of the periodic faceting of epitaxial molybdenum oxide grown on Mo(110). Physical Review B, 77(8):085417, 2008.
[97] K. Radican, N. Berdunov, G. Manai, and I. V. Shvets. Epitaxial molybdenum oxide grown on Mo(110) : LEED, STM, and density functional theory calculations. Physical Review B, 75(15):155434, April 2007.
[98] L.-L. Wang and H.-P. Cheng. Rotation, translation, charge transfer, and electronic structure of C60 on cu(111) surface. Physical Review B, 69(4):045404, 2004.
[99] T. Hashizume, K. Motai, X. Wang, H. Shinohara, Y. Saito, Y. Maruyama, K. Ohno, Y. Kawazoe, Y. Nishina, H. Pickering, et al. Intramolecular structures of C60 molecules adsorbed on the Cu (111)-(1× 1) surface. Physical review letters, 71(18):2959, 1993.
[100] A. Fartash. Interfacially ordered C60 films on Cu(111) substrates. Journal of applied physics, 79(2):742–747, 1996.
[101] T. Sakurai, X. Wang, T. Hashizume, V. Yurov, H. Shinohara, and H. Pickering. Adsorption of fullerenes on Cu(111) and Ag(111) surfaces. Applied surface science, 87:405–413, 1995.
[102] T. Sakurai, X.-D. Wang, Q. Xue, Y. Hasegawa, T. Hashizume, and H. Shinohara. Scanning tunneling microscopy study of fullerenes. Progress in surface science, 51(4):263–408, 1996.
[103] K.-D. Tsuei and P. Johnson. Charge transfer and a new image state of C60 on Cu(111) surface studied by inverse photoemission. Solid state communications, 101(5):337–341, 1997.
[104] K.-D. Tsuei, J.-Y. Yuh, C.-T. Tzeng, R.-Y. Chu, S.-C. Chung, and K.-L. Tsang. Photoemission and photoabsorption study of C60 adsorption on Cu (111) surfaces. Physical Review B, 56(23):15412, 1997.
[105] A. Hebard, R. Ruel, and C. Eom. Charge transfer and surface scattering at Cu-C60 planar interfaces. Physical Review B, 54(19):14052, 1996.
[106] E. I. Altman and R. J. Colton. Determination of the orientation of C60 adsorbed on Au(111) and Ag(111). Physical Review B, 48(24):18244–18249, December 1993.
[107] E. I. Altman and R. J. Colton. The interaction of C60 with noble metal surfaces. Surface Science, 295(1):13–33, 1993.
[108] K. Pussi, H. Li, H. Shin, L. S. Loli, A. Shukla, J. Ledieu, V. Fournée, L. Wang, S. Su, K. Marino, et al. Elucidating the dynamical equilibrium of C60 molecules on Ag (111). Physical Review B, 86(20):205406, 2012.
[109] W. W. Pai, H. Jeng, C.-M. Cheng, C.-H. Lin, X. Xiao, A. Zhao, X. Zhang, G. Xu, X. Shi, M. Van Hove, et al. Optimal electron doping of a C60 monolayer on Cu (111) via interface reconstruction. Physical review letters, 104(3):036103, 2010.
[110] X.-Q. Shi, M. A. Van Hove, and R.-Q. Zhang. Adsorbate-induced reconstruction by C60 on close-packed metal surfaces: Mechanism for different types of reconstruction. Physical Review B, 85(7):075421, 2012.
[111] C. Cepek, A. Goldoni, and S. Modesti. Chemisorption and fragmentation of C60 on Pt (111) and Ni (110). Physical Review B, 53(11):7466, 1996.
[112] N. Swami, H. He, and B. E. Koel. Polymerization and decomposition of C60 on Pt(111) surfaces. Physical Review B, 59(12):8283, 1999.
[113] T. Orzali, D. Forrer, M. Sambi, A. Vittadini, M. Casarin, and E. Tondello. Temperature-dependent self-assemblies of C60 on (1× 2)-Pt(110): A STM/DFT investigation. The Journal of Physical Chemistry C, 112(2):378–390, 2008.
[114] M. Hunt, S. Modesti, P. Rudolf, and R. Palmer. Charge transfer and structure in C60 adsorption on metal surfaces. Physical Review B, 51(15):10039, 1995.
[115] K. Sakamoto, D. Kondo, Y. Ushimi, M. Harada, A. Kimura, A. Kakizaki, and S. Suto. Temperature dependence of the electronic structure of C60 films adsorbed on Si(001)-(2× 1) and Si(111)-(7× 7) surfaces. Physical Review B, 60(4):2579, 1999.
[116] D. Chen and D. Sarid. An STM study of C60 adsorption on Si(100)-(2× 1) surfaces: from physisorption to chemisorption. Surface science, 329(3):206–218, 1995.
[117] X. Yao, T. G. Ruskell, R. K. Workman, D. Sarid, and D. Chen. Intramolecular features of individual C60 molecules on Si(100) observed by STM. Surface science, 367(3):L85–L90, 1996.
[118] E. Giudice, E. Magnano, S. Rusponi, C. Boragno, and U. Valbusa. Morphology of C60 thin films grown on Ag(001). Surface Science, 405(2-3):L561–L565, 1998.
[119] S. Tsukamoto, T. Nakayama, and M. Aono. Stable molecular orientations of a C60 dimer in a photoinduced dimer row. Carbon, 45(6):1261–1266, 2007.
[120] M. Nakaya, Y. Kuwahara, M. Aono, and T. Nakayama. Reversibility-controlled single molecular level chemical reaction in a C60 monolayer via ionization induced by scanning transmission microscopy. Small, 4(5):538–541, 2008.
[121] J. Zhao, K. Tatani, and Y. Ozaki. Mechanism of thermal phase transition of a ferroelectric liquid crystal with monotropic transition temperature studied by infrared spectroscopy combined with principal component analysis and sample–sample two-dimensional correlation spectroscopy. Appl. Spectrosc., 59(5):620–629, 2005.
[122] H. W. J. Blöte, W. Guo, and H. J. Hilhorst. Phase transition in a two-dimensional heisenberg model. Phys. Rev. Lett., 88(4):047203, 2002.
[123] O. Lübben, L. Dudy, A. Krapf, C. Janowitz, and R. Manzke. Structural behavior of PbyBi1.95−ySr1.49La0.4Cu1.15O6+δ for 0 < y < 0.53. Physical Review B, 81(17):174112, 2010.
[124] F. Delogu, G. Manai, and I. Shvets. The reversibility of phase transitions in Ti/Co core/shell nanometre-sized particles. Nanotechnology, 20(1):015702, 2009.
[125] S. Sarkar and S. C. Peter. Structural phase transitions in a new compound Eu2AgGe3. Inorganic chemistry, 52(17):9741–9748, 2013.
[126] H. Lüth. Solid Surfaces, Interfaces and Thin Films. Springer, 2001.
[127] P. V. L. Lyuksyutov I.F., Naumovets A.G. Two-Dimensional Crystals. Naukova Dumka, 1988.
[128] P. H. E. M. P. Papon, J. Leblond. The Physics of Phase Transitions: Concepts and Applications. Springer, 2006.
[129] J. M. Kosterlitz and D. J. Thouless. Ordering, metastability and phase transitions in two-dimensional systems. J.Phys.C: Solid State Phys., 6:1181–1203, 1973.
[130] R. D. Johnson, C. S. Yannoni, H. C. Dorn, J. R. Salem, and D. S. Bethune. C60 rotation in the solid state: Dynamics of a faceted spherical top. Science, 255(5049):1235–1238, 1992.
[131] W. I. F. David, R. M. Ibberson, J. C. Matthewman, K. Prassides, T. J. S. Dennis, J. P. Hare, H. W. Kroto, R. Taylor, and D. R. M. Walton. Crystal structure and bonding of ordered C60. Nature, 353(6340):147–149, 1991.
[132] W. I. F. David, R. M. Ibberson, T. J. S. Dennis, J. P. Hare, and K. Prassides. Structural phase transitions in the fullerene C60. Europhysics Letters, 18(3):219, 1992.
[133] R. Moret. Structures, phase transitions and orientational properties of the C60 monomer and polymers. Acta Crystallographica Section A, 61(1):62–76, 2005.
[134] S. L. Chaplot, L. Pintschovius, M. Haluska, and H. Kuzmany. Orientational disorder in C60 below Ts: A diffuse-neutron-scattering study. Physical Review B, 51(23):17028–17034, 1995.
[135] W. Schranz, A. Fuith, P. Dolinar, H. Warhanek, M. Haluska, and H. Kuzmany. Low frequency elastic properties of the structural and freezing transitions in single-crystal C60. Phys. Rev. Lett., 71(10):1561–1564, 1993.
[136] F. Gugenberger, R. Heid, C. Meingast, P. Adelmann, M. Braun, H. Wühl, M. Haluska, and H. Kuzmany. Glass transition in single-crystal C60 studied by high-resolution dilatometry. Phys. Rev. Lett., 69(26):3774–3777, 1992.
[137] F. Yan, Y. N. Wang, and J. S. Liu. The non-exponential relaxation of the C60 crystal around glass transition temperature. Europhysics Letters, 48(6):662, 1999.
[138] J. P. Lu, X.-P. Li, and R. M. Martin. Ground state and phase transitions in solid C60. Phys. Rev. Lett., 68(10):1551–1554, 1992.
[139] T. Matsuo, H. Suga, W. I. F. David, R. M. Ibberson, P. Bernier, A. Zahab, C. Fabre, A. Rassat, and A. Dworkin. The heat capacity of solid C60. Solid State Communications, 83(9):711–715, 1992.
[140] Y. Yoneda, K. Sakaue, and T. Terauchi. Phase transitions of C60 thin films grown by molecular beam epitaxy. Journal of Physics: Condensed Matter, 9(14):2851, 1997.
[141] D. Lamoen and K. H. Michel. Crystal field, orientational order, and lattice contraction in solid C60. J. Chem. Phys., 101(2):1435–1443, 1994.
[142] D. Passerone and E. Tosatti. Surface rotational disordering in crystalline C60. Surf. Rev. Lett., 4(5):859–861, 1997.
[143] C. Laforge, D. Passerone, A. B. Harris, P. Lambin, and E. Tosatti. Two-stage rotational disordering of a molecular crystal surface: C60. Phys. Rev. Lett., 87(8):085503, 2001.
[144] X. Lu, M. Grobis, K. H. Khoo, S. G. Louie, and M. F. Crommie. Charge transfer and screening in individual C60 molecules on metal substrates: A scanning tunneling spectroscopy and theoretical study. Physical Review B, 70(11):115418, 2004.
[145] J. A. Larsson, S. D. Elliott, J. C. Greer, J. Repp, G. Meyer, and R. Allenspach. Orientation of individual C60 molecules adsorbed on Cu(111): Low-temperature scanning tunneling microscopy and density functional calculations. Physical Review B, 77(11):115434, 2008.
[146] S. B. Trickey, F. Müller-Plathe, G. H. F. Diercksen, and J. C. Boettger. Interplanar binding and lattice relaxation in a graphite dilayer. Physical Review B, 45:4460–4468, 1992.
[147] S. Saito and A. Oshiyama. Cohesive mechanism and energy bands of solid C60. Phys. Rev. Lett., 66:2637–2640, 1991.
[148] S. Okada, S. Saito, and A. Oshiyama. Energetics and electronic structures of encapsulated C60 in a carbon nanotube. Phys. Rev. Lett., 86:3835–3838, 2001.
[149] J.-C. Charlier, X. Gonze, and J.-P. Michenaud. Graphite interplanar bonding: Electronic delocalization and van der waals interaction. Europhysics Letters, 28(6):403, 1994.
[150] N. Troullier and J. L. Martins. Structural and electronic properties of C60. Physical Review B, 46:1754–1765, 1992.
[151] J.-C. Charlier, X. Gonze, and J.-P. Michenaud. First-principles study of carbon nanotube solid-state packings. Europhysics Letters, 29(1):43, 1995.
[152] L. A. Girifalco and M. Hodak. Van der waals binding energies in graphitic structures. Physical Review B, 65:125404, 2002.
[153] M. Fujimoto. The Physics of Structural Phase Transitions, page 39. Springer, 2005.
[154] S. Savin, A. B. Harris, and T. Yildirim. Towards a microscopic approach to the intermolecular interaction in solid C60. Physical Review B, 55(21):14182–14199, 1997.
[155] F. Tournus, J.-C. Charlier, and P. Mèlinon. Mutual orientation of two C60 molecules: An ab initio study. J Chem Phys., 122(9):094315, 2005.
[156] A. Goldoni, C. Cepek, R. Larciprete, L. Sangaletti, S. Pagliara, G. Paolucci, and M. Sancrotti. Core level photoemission evidence of frustrated surface molecules: A germ of disorder at the (111) surface of C60 before the order-disorder surface phase transition. Phys. Rev. Lett., 88(19):196102, 2002.
[157] A. Glebov, V. Senz, J. P. Toennies, and G. Gensterblum. Rotational-disordering phase transition of C60(111) epitaxial films grown on GeS(001). Journal of Applied Physics, 82(5):2329–2333, 1997.
[158] M. D. Ediger, C. A. Angell, and S. R. Nagel. Supercooled liquids and glasses. The Journal of Physical Chemistry, 100(31):13200–13212, 1996.
[159] F. H. Stillinger. A topographic view of supercooled liquids and glass formation. Science, 267(5206):1935–1939, 1995.
[160] R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson. Models of hierarchically constrained dynamics for glassy relaxation. Phys. Rev. Lett., 53(10):958–961, 1984.
[161] P. J. Moriarty. Fullerene adsorption on semiconductor surfaces. Surface Science Reports, 65(7):175–227, 2010.
[162] J. Repp, G. Meyer, F. E. Olsson, and M. Persson. Controlling the charge state of individual gold adatoms. Science, 305(5683):493–495, 2004.
[163] I. Swart, T. Sonnleitner, and J. Repp. Charge state control of molecules reveals modification of the tunneling barrier with intramolecular contrast. Nano Letters, 11(4):1580–1584, 2011.
[164] V. Weisskopf and E. Wigner. Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie. Zeitschrift für Physik, 63:54, 1930.
[165] C. J. Chen. Introduction to scanning tunneling microscopy, volume 227. Oxford University Press New York, 1993.
[166] A. N. Chaika, S. S. Nazin, V. N. Semenov, N. N. Orlova, S. I. Bozhko, O. Lübben, S. A. Krasnikov, K. Radican, and I. V. Shvets. High resolution STM imaging with oriented single crystalline tips. Applied Surface Science, 267(0):219–223, 2013. 11th International Conference on Atomically Controlled Surfaces, Interfaces and Nanostructures.
[167] R. Yamachika, M. Grobis, A. Wachowiak, and M. Crommie. Controlled atomic doping of a single C60 molecule. Science, 304(5668):281–284, 2004.
[168] R. Flores-Moreno. Symmetry conservation in Fukui functions. Journal of Chemical Theory and Computation, 6(1):48–54, 2009.
[169] C. Brueckner, J. J. Posakony, C. K. Johnson, R. W. Boyle, B. R. James, and D. Dolphin. Novel and improved syntheses of 5, 15-diphenylporphyrin and its dipyrrolic precursors. Journal of Porphyrins and Phthalocyanines, 2(6):455–465, 1998.
[170] M. O. Senge, M. Fazekas, E. G. Notaras, W. J. Blau, M. Zawadzka, O. B. Locos, and E. M. N. Mhuircheartaigh. Nonlinear optical properties of porphyrins. Advanced Materials, 19(19):2737–2774, 2007.
[171] V. Lin, S. G. DiMagno, and M. J. Therien. Highly conjugated, acetylenyl bridged porphyrins: New models for light-harvesting antenna systems. Science, 264(5162):1105–1111, 1994.
[172] J. Chen, M. Reed, A. Rawlett, and J. Tour. Large on-off ratios and negative differential resistance in a molecular electronic device. Science, 286(5444):1550–1552, 1999.
[173] A. Tsuda and A. Osuka. Fully conjugated porphyrin tapes with electronic absorption bands that reach into infrared. Science, 293(5527):79–82, 2001.
[174] O. Ikkala and G. ten Brinke. Functional materials based on self-assembly of polymeric supramolecules. Science, 295(5564):2407–2409, 2002.
[175] N. Papageorgiou, E. Salomon, T. Angot, J.-M. Layet, L. Giovanelli, and G. L. Lay. Physics of ultra-thin phthalocyanine films on semiconductors. Progress in surface science, 77(5):139–170, 2004.
[176] A. M. Sena, V. Brázdová, and D. R. Bowler. Density functional theory study of the iron-based porphyrin haem (b) on the Si(111):H surface. Physical Review B, 79(24):245404, 2009.
[177] M. Wagner, P. Puschnig, S. Berkebile, F. P. Netzer, and M. G. Ramsey. Alternating chirality in the monolayer H2TPP on Cu(110)–(2 × 1)O. Physical Chemistry Chemical Physics, 15(13):4691–4698, 2013.
[178] M. Lackinger, M. S. Janson, and W. Ho. Localized interaction of single porphyrin molecules with oxygen vacancies on TiO2(110). The Journal of chemical physics, 137(23):234707, 2012.
[179] P. A. Sloan and R. Palmer. Two-electron dissociation of single molecules by atomic manipulation at room temperature. Nature, 434(7031):367–371, 2005.
[180] M. El Garah, Y. Makoudi, F. Palmino, E. Duverger, P. Sonnet, L. Chaput, A. Gourdon, and F. Cherioux. STM and DFT investigations of isolated porphyrin on a silicon-based semiconductor at room temperature. ChemPhysChem, 10(18):3190–3193, 2009.
[181] Y. Suzuki, M. Hietschold, and D. R. Zahn. Growth of copper phthalocyanine on hydrogen passivated vicinal silicon (111) surfaces. Applied Surface Science, 252(15):5449–5452, 2006.
[182] T.-C. Shen, C. Wang, G. Abeln, J. Tucker, J. Lyding, P. Avouris, and R. Walkup. Atomic-scale desorption through electronic and vibrational excitation mechanisms. Science, 268(5217):1590–1592, 1995.
[183] M. Hersam, N. Guisinger, and J. Lyding. Silicon-based molecular nanotechnology. Nanotechnology, 11(2):70, 2000.
[184] Y. Bai, F. Buchner, M. T. Wendahl, I. Kellner, A. Bayer, H.-P. Steinrück, H. Marbach, and J. M. Gottfried. Direct metalation of a phthalocyanine monolayer on Ag(111) with coadsorbed iron atoms. The Journal of Physical Chemistry C, 112(15):6087–6092, 2008.
[185] F. Buchner, K. Flechtner, Y. Bai, E. Zillner, I. Kellner, H.-P. Steinrück, H. Marbach, and J. M. Gottfried. Coordination of iron atoms by tetraphenylporphyrin monolayers and multilayers on Ag (111) and formation of iron-tetraphenylporphyrin. The Journal of Physical Chemistry C, 112(39):15458–15465, 2008.
[186] J. V. Barth. Fresh perspectives for surface coordination chemistry. Surface Science, 603(10):1533–1541, 2009.
[187] R. Wilson and S. Chiang. Registration and nucleation of the
Ag/Si(111)-×
R30° structure by scanning tunneling microscopy.
Physical Review Letters, 59(20):2329, 1987.
[188] E. van Loenen, J. Demuth, R. Tromp, and R. Hamers. Local
electron states and surface geometry of Si(111)- ×
Ag. Physical
Review Letters, 58:373–376, 1987.
[189] T. Takahashi and S. Nakatani. Refinement of the Si(111) ×
-Ag structure by surface X-ray diffraction. Surface Science,
282(1-2):17–32, 1993.
[190] M. Upward, P. Beton, and P. Moriarty. Adsorption of cobalt phthalocyanine on Ag terminated Si(111). Surface Science, 441(1):21 – 25, 1999.
[191] P. Guaino, A. Cafolla, D. Carty, G. Sheerin, and G. Hughes.
An STM investigation of the interaction and ordering of pentacene
molecules on the Ag/Si(111)- ×
R30° surface. Surface science,
540(1):107–116, 2003.
[192] W. Auwärter, A. Weber-Bargioni, A. Riemann, A. Schiffrin, O. Gröning, R. Fasel, and J. Barth. Self-assembly and conformation of tetrapyridyl-porphyrin molecules on Ag(111). Journal of Chemical Physics, 124(19):194708–194708, 2006.
[193] W. Wang, Y. Ji, H. Zhang, A. Zhao, B. Wang, J. Yang, and J. G. Hou. Negative differential resistance in a hybrid silicon-molecular system: Resonance between the intrinsic surface-states and the molecular orbital. ACS Nano, 6(8):7066–7076, 2012.
[194] F. Buchner, I. Kellner, W. Hieringer, A. Gorling, H.-P. Steinruck, and H. Marbach. Ordering aspects and intramolecular conformation of tetraphenylporphyrins on Ag(111). Phys. Chem. Chem. Phys., 12:13082–13090, 2010.
[195] J. Beggan, S. Krasnikov, N. Sergeeva, M. Senge, and A. Cafolla. Control of the axial coordination of a surface-confined manganese (III) porphyrin complex. Nanotechnology, 23(23):235606, 2012.
[196] W. Auwärter, K. Seufert, F. Klappenberger, J. Reichert, A. Weber-Bargioni, A. Verdini, D. Cvetko, M. DellAngela, L. Floreano, A. Cossaro, et al. Site-specific electronic and geometric interface structure of Co-tetraphenyl-porphyrin layers on Ag (111). Physical Review B, 81(24):245403, 2010.
[197] K. Comanici, F. Buchner, K. Flechtner, T. Lukasczyk, J. M. Gottfried, H.-P. Steinrück, and H. Marbach. Understanding the contrast mechanism in scanning tunneling microscopy (STM) images of an intermixed tetraphenylporphyrin layer on Ag(111). Langmuir, 24(5):1897–1901, 2008.
[198] L. Scudiero, D. E. Barlow, and K. Hipps. Physical properties and metal ion specific scanning tunneling microscopy images of metal (II) tetraphenylporphyrins deposited from vapor onto gold (111). The Journal of Physical Chemistry B, 104(50):11899–11905, 2000.
[199] M.-S. Liao and S. Scheiner. Electronic structure and bonding in metal porphyrins, metal=Fe, Co, Ni, Cu, Zn. Journal of Chemical Physics, 117:205, 2002.
[200] S. A. Krasnikov, A. B. Preobrajenski, N. N. Sergeeva, M. M. Brzhezinskaya, M. A. Nesterov, A. A. Cafolla, M. O. Senge, and A. S. Vinogradov. Electronic structure of Ni(II) porphyrins and phthalocyanine studied by soft X-ray absorption spectroscopy. Chemical Physics, 332:318–324, February 2007.
[201] S. A. Krasnikov, N. N. Sergeeva, M. M. Brzhezinskaya, A. B. Preobrajenski, Y. N. Sergeeva, N. A. Vinogradov, A. A. Cafolla, M. O. Senge, and A. S. Vinogradov. An X-ray absorption and photoemission study of the electronic structure of Ni porphyrins and Ni N-confused porphyrin. Journal of Physics: Condensed Matter, 20(23):235207, 2008.
[202] M. Cuberes, R. Schlittler, and J. Gimzewski. Manipulation of C60 molecules on Cu(111) surfaces using a scanning tunneling microscope. Applied Physics A: Materials Science & Processing, 66:S669–S673, 1998.
[203] H. Tang, M. Cuberes, C. Joachim, and J. Gimzewski. Fundamental considerations in the manipulation of a single C60 molecule on a surface with an STM. Surface Science, 386(1):115–123, 1997.
[204] T. Yokoyama, S. Yokoyama, T. Kamikado, and S. Mashiko. Nonplanar adsorption and orientational ordering of porphyrin molecules on Au(111). The Journal of Chemical Physics, 115:3814, 2001.
[205] M. P. de Jong, R. Friedlein, S. Sorensen, G. Öhrwall, W. Osikowicz, C. Tengsted, S. Jönsson, M. Fahlman, and W. R. Salaneck. Orbital-specific dynamic charge transfer from Fe(II)-tetraphenylporphyrin molecules to molybdenum disulfide substrates. Physical Review B, 72(3):035448, 2005.
[206] K. M. Kadish, K. M. Smith, and R. Guilard. The Porphyrin Handbook, Applications: Past, Present and Future, volume 6. San Diego, CA: Academic, 2000.
[207] W. Liu and J. T. Groves. Manganese porphyrins catalyze selective C–H bond halogenations. Journal of the American Chemical Society, 132(37):12847–12849, 2010.
[208] J. T. Groves. Reactivity and mechanisms of metalloporphyrin-catalyzed oxidations. Journal of Porphyrins and Phthalocyanines, 4(4):350–352, 2000.
[209] J. T. Groves and T. E. Nemo. Epoxidation reactions catalyzed by iron porphyrins. Oxygen transfer from iodosylbenzene. Journal of the American Chemical Society, 105(18):5786–5791, 1983.
[210] B. Meunier. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chemical Reviews, 92(6):1411–1456, 1992.
[211] B. Hulsken, R. V. Hameren, J. W. Gerritsen, T. Khoury, P. Thordarson, M. J. Crossley, A. E. Rowan, R. J. Nolte, J. A. Elemans, and S. Speller. Real-time single-molecule imaging of oxidation catalysis at a liquid–solid interface. Nature Nanotechnology, 2(5):285–289, 2007.
[212] A. D. Adler, F. R. Longo, F. Kampas, and J. Kim. On the preparation of metalloporphyrins. Journal of Inorganic and Nuclear Chemistry, 32(7):2443–2445, 1970.
[213] P. R. O. de Montellano. Cytochrome P450: structure, mechanism, and biochemistry. Springer, 2005.
[214] M. C. Feiters, A. E. Rowan, and R. J. Nolte. From simple to supramolecular cytochrome P450 mimics. Chemical Society Reviews, 29(6):375–384, 2000.
[215] B. Hulsken, R. V. Hameren, P. Thordarson, J. W. Gerritsen, R. J. Nolte, A. E. Rowan, M. J. Crossley, J. Elemans, and S. Speller. Scanning tunneling microscopy and spectroscopy studies of porphyrins at solid-liquid interfaces. Japanese Journal of Applied Physics, 45(3B):1953, 2006.
[216] M. Parschau, D. Passerone, K.-H. Rieder, H. Hug, and K.-H. Ernst. Switching the chirality of single adsorbate complexes. Angewandte Chemie International Edition, 48(22):4065–4068, 2009.
[217] R. Fasel, M. Parschau, and K.-H. Ernst. Amplification of chirality in two-dimensional enantiomorphous lattices. Nature, 439(7075):449–452, 2006.
[218] K.-H. Ernst. Supramolecular surface chirality. In Supramolecular Chirality, pages 209–252. Springer, 2006.
[219] W. B. Jennings, B. M. Farrell, and J. F. Malone. Attractive intramolecular edge-to-face aromatic interactions in flexible organic molecules. Accounts of Chemical Research, 34(11):885–894, 2001.
[220] J. Brede, M. Linares, S. Kuck, J. Schwoebel, A. Scarfato, S.-H. Chang, G. Hoffmann, R. Wiesendanger, R. Lensen, P. H. Kouwer, et al. Dynamics of molecular self-ordering in tetraphenyl porphyrin monolayers on metallic substrates. Nanotechnology, 20(27):275602, 2009.
[221] E. A. Meyer, R. K. Castellano, and F. Diederich. Interactions with aromatic rings in chemical and biological recognition. Angewandte Chemie International Edition, 42(11):1210–1250, 2003.
[222] S. Burley and G. Petsko. Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science, 229(4708):23–28, 1985.
[223] A. Rosa, G. Ricciardi, and E. J. Baerends. Synergism of porphyrin-core saddling and twisting of meso-aryl substituents. The Journal of Physical Chemistry A, 110(15):5180–5190, 2006.
[224] V. Iancu, A. Deshpande, and S.-W. Hla. Manipulating Kondo temperature via single molecule switching. Nano Letters, 6(4):820–823, 2006.
[225] R. Gupta and S. Sen. Calculation of multiplet structure of core p-vacancy levels. II. Physical Review B, 12(1):15, 1975.
[226] J.-S. Kang, G. Kim, H. Lee, D. Kim, H. Kim, J. Shim, S. Lee, H. Lee, J.-Y. Kim, B. Kim, et al. Soft X-ray absorption spectroscopy and magnetic circular dichroism study of the valence and spin states in spinel MnFe2O4. Physical Review B, 77(3):035121, 2008.
[227] H. Nesbitt and D. Banerjee. Interpretation of XPS Mn (2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. American Mineralogist, 83(3):305–315, 1998.
[228] D. den Boer, M. Li, T. Habets, P. Iavicoli, A. E. Rowan, R. J. Nolte, S. Speller, D. B. Amabilino, S. D. Feyter, and J. A. Elemans. Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface. Nature Chemistry, 5(7):621–627, 2013.
[229] M. Momenteau, B. Loock, C. Tetreau, D. Lavalette, A. Croisy, C. Schaeffer, C. Huel, and J.-M. Lhoste. Synthesis and characterization of a new series of iron (II) single-face hindered porphyrins. Influence of central steric hindrance upon carbon monoxide and oxygen binding. J. Chem. Soc., Perkin Trans. 2, (2):249–257, 1987.
[230] F. Sedona, M. Di Marino, M. Sambi, T. Carofiglio, E. Lubian, M. Casarin, and E. Tondello. Fullerene/porphyrin multicomponent nanostructures on Ag(110): From supramolecular self-assembly to extended copolymers. ACS Nano, 4(9):5147–5154, 2010.
[231] S. Yoshimoto, S. Sugawara, and K. Itaya. Effect of underlying Ni(II) porphyrin adlayer on the formation of supramolecular assembly of fullerenes on Au(111) in solution. Electrochemistry Tokyo, 74(2):175, 2006.
[232] S. Vijayaraghavan, D. Ecija, W. Auwarter, S. Joshi, K. Seufert, A. P. Seitsonen, K. Tashiro, and J. V. Barth. Selective supramolecular fullerene–porphyrin interactions and switching in surface-confined C60–Ce(TPP)2 Dyads. Nano Letters, 12(8):4077–4083, 2012.