Download this PDF file Fullscreen Fullscreen Off
References
- Bénilan, Philippe; Boccardo, Lucio; Gallouët, Thierry; Gariepy, Ron; Pierre, Michel; Vázquez, Juan Luis. An $L^ 1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), no. 2, 241--273. MR1354907
- Boccardo, Lucio; Gallouët, Thierry. Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87 (1989), no. 1, 149--169. MR1025884
- Boccardo, Lucio; Gallouët, Thierry; Orsina, Luigi. Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data. Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), no. 5, 539--551. MR1409661
- Briand, Ph.; Delyon, B.; Hu, Y.; Pardoux, E.; Stoica, L. $L^ p$ solutions of backward stochastic differential equations. Stochastic Process. Appl. 108 (2003), no. 1, 109--129. MR2008603
- Chung, Kai Lai; Zhao, Zhong Xin. From Brownian motion to Schrödinger's equation. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 312. Springer-Verlag, Berlin, 1995. xii+287 pp. ISBN: 3-540-57030-6 MR1329992
- Dall'Aglio, P.; Leone, C. Obstacles problems with measure data and linear operators. Potential Anal. 17 (2002), no. 1, 45--64. MR1906408
- Dal Maso, Gianni; Murat, François; Orsina, Luigi; Prignet, Alain. Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 4, 741--808. MR1760541
- Fukushima, Masatoshi; Ōshima, Yōichi; Takeda, Masayoshi. Dirichlet forms and symmetric Markov processes. de Gruyter Studies in Mathematics, 19. Walter de Gruyter & Co., Berlin, 1994. x+392 pp. ISBN: 3-11-011626-X MR1303354
- Kinderlehrer, David; Stampacchia, Guido. An introduction to variational inequalities and their applications. Pure and Applied Mathematics, 88. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. xiv+313 pp. ISBN: 0-12-407350-6 MR0567696
- Klimsiak, T.: On time-dependent functionals of diffusions corresponding to divergence form operators. phJ. Theoret. Probab. DOI 10.1007/s10959-011-0381-4
- Krasnosel'skii, M. A. Topological methods in the theory of nonlinear integral equations. Translated by A. H. Armstrong; translation edited by J. Burlak. A Pergamon Press Book The Macmillan Co., New York 1964 xi + 395 pp. MR0159197
- Kufner, Alois; John, Oldřich; Fučík, Svatopluk. Function spaces. Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis. Noordhoff International Publishing, Leyden; Academia, Prague, 1977. xv+454 pp. ISBN: 90-286-0015-9 MR0482102
- Leone, Chiara. Existence and uniqueness of solutions for nonlinear obstacle problems with measure data. Nonlinear Anal. 43 (2001), no. 2, Ser. A: Theory Methods, 199--215. MR1790102
- Leone, Chiara; Porretta, Alessio. Entropy solutions for nonlinear elliptic equations in $L^ 1$. Nonlinear Anal. 32 (1998), no. 3, 325--334. MR1610574
- Pardoux, Etienne; Răşcanu, Aurel. Backward stochastic differential equations with subdifferential operator and related variational inequalities. Stochastic Process. Appl. 76 (1998), no. 2, 191--215. MR1642656
- Rozkosz, Andrzej. On Dirichlet processes associated with second order divergence form operators. Potential Anal. 14 (2001), no. 2, 123--148. MR1812438
- Rozkosz, Andrzej. BSDEs with random terminal time and semilinear elliptic PDEs in divergence form. Studia Math. 170 (2005), no. 1, 1--21. MR2142181
- Rozkosz, Andrzej. On stochastic representation for solutions of the Dirichlet problem for elliptic equations in divergence form. Stoch. Anal. Appl. 27 (2009), no. 1, 1--15. MR2473137
- Rozkosz, A., Sl omi'nski, L.: BL^p solutions of reflected BSDEs under monotonicity condition. ARXIV1205.6737
- Stroock, Daniel W. Diffusion semigroups corresponding to uniformly elliptic divergence form operators. Séminaire de Probabilités, XXII, 316--347, Lecture Notes in Math., 1321, Springer, Berlin, 1988. MR0960535

This work is licensed under a Creative Commons Attribution 3.0 License.