Download this PDF file Fullscreen Fullscreen Off
References
- J. T. Cox, A. Greven. The finite systems scheme: An abstract theorem and a new example, Proceedings of CRM Conference on Measure valued processes. Stochastic partial differential equation and interacting Systems. CRM and Lecture Notes series of the American Mathematical Society. Vol. 5, 55-68, 1994. Â Math. Review link
- J.T. Cox, A. Greven, T. Shiga. Finite and infinite systems of interacting diffusions. Prob. Theory and Rel. Fields,103, 165-197, 1995. Â Math. Review link
- J.T. Cox, A. Greven, T. Shiga. Finite and infinite systems of interacting diffusions. Part II. Math. Nachrichten 192, 1998. Â Math. Review link
- D. A. Dawson. Measure-valued Markov Processes, In Ecole d'Eté de Probabilités de Saint Flour XXI, Lecture Notes in Mathematics 1541, 1-261, Springer, 1993.  Math. Review link
- D. A. Dawson, A. Greven. Hierarchical models of interacting diffusions: Multiple time scales, Phase transitions and cluster-formation. Prob. Theor. and Rel. Fields, 96, 435-473, 1993. Math. Review link
- D. A. Dawson, A. Greven. Multiple space-time scale analysis for interacting branching models. Electronic Journal of Probability, Vol. 1, Paper no. 14, 1-84, 1996. Â Math. Review link
- D. A. Dawson, A. Greven. Hierarchically interacting Fleming-Viot processes with selection and mutation: Multiple space time scale analysis and quasi-equilibria, Electronic Journal of Probability, Vol. 4, Paper 4, 1-81, 1999. Â Math. Review link
- D. A. Dawson, A. Greven, J. Vaillancourt. Equilibria and Quasi-equilibria for infinite systems of Fleming-Viot processes. Math. Society, Vol. 347, Number 7, 1995. Â Math. Review link
- D. A. Dawson, K. Hochberg. Wandering random measures in the Fleming-Viot model, Ann. Probab. 10, 554-580, 1982. Â Math. Review link
- D. A. Dawson, E. A. Perkins. Historical Processes, Memoirs of the American Mathematical Society, vol. 93, no. 454, 1991. Â Math. Review link
- D.A. Dawson and E.A. Perkins: Long-time behavior and coexistence in a mutually catalytic branching model, Ann. Probab. 26, 1088-1138, 1998. Â Math. Review link
- S. N. Ethier, T. G. Kurtz. Markov Process - Characterization and Convergence, John Wiley and Sons, 1986. Â Math. Review link
- S.N. Evans and E.A. Perkins. Measure-valued branching diffusions with singular interactions, Can. J. Math. 46(1), 120-168 , 1994. Â Math. Review link
- K. Fleischmann, A. Greven. Time-space analysis of the cluster-formation in interacting diffusions. Electronic Journal of Probability, 1(6):1-46, 1996. Â Math. Review link
- A. Greven. Phase Transition for the Coupled Branching Process, Part I: The ergodic theory in the range of finite second moments. Probab. Theory and Rel. Fields 87, 417-458, 1991. Â Math. Review link
- I. Karatzas and S.E. Shreve. Brownian Motion and Stochastic Calculus, 2nd ed., Springer-Verlag, 1991. Â Math. Review link
- U. Krengel. Ergodic Theorems. de Gruyter Studies in Mathematics 6, Berlin-New York, 1985. Â Math. Review link
- T. M. Liggett and F. L. Spitzer. Ergodic theorems for coupled random walks and other systems with locally interacting components, Z. Wahrsch. verw. Gebiete, 56(4), 443ó468, 1981.  Math. Review link
- E.A. Perkins. Measure-valued branching diffusions with spatial interactions, Probab. Theory Relat. Fields, 94, 189-245, 1992. Â Math. Review link
- E.A. Perkins: Conditional Dawson-Watanabe processes and Fleming-Viot processes, Seminar in Stochastic Processes, Birkhauser, 142-155, 1991. Math. Review link
- P. Révész. Random Walk in Random and Non-random environments, World Scientific, 1990. Math. Review link
- L.C.G. Rogers and D. Williams. Diffusions, Markov Processes and Martingales, volume 2, John Wiley and Sons, 1987. Â Math. Review link
- D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, Springer-Verlag, 1991. Math. Review link
- T. Shiga. Ergodic theorems and exponential decay of sample paths for certain diffusions, Osaka J. Math. 29, 789-807,1992. Â Math. Review link
- T. Shiga and A. Shimizu. Infinite-dimensional stochastic differential equations and their applications. J. Math. Kyoto Univ., 20, 395-416 1980. Â Math. Review

This work is licensed under a Creative Commons Attribution 3.0 License.