List Colorings of $k$-Partite $k$-Graphs
Abstract
A $k$-uniform hypergraph (or $k$-graph) $H = (V, E)$ is $k$-partite if $V$ can be partitioned into $k$ sets $V_1, \ldots, V_k$ such that each edge in $E$ contains precisely one vertex from each $V_i$. In this note, we consider list colorings for such hypergraphs. We show that for any $\varepsilon > 0$ if each vertex $v \in V(H)$ is assigned a list of size $|L(v)| \geq \left((k-1+\varepsilon)\Delta/\log \Delta\right)^{1/(k-1)}$, then $H$ admits a proper $L$-coloring, provided $\Delta$ is sufficiently large. Up to a constant factor, this matches the bound on the chromatic number of simple $k$-graphs shown by Frieze and Mubayi, and that on the list chromatic number of triangle free $k$-graphs shown by Li and Postle. Our results hold in the more general setting of "color-degree" as has been considered for graphs. Furthermore, we establish a number of asymmetric statements matching results of Alon, Cambie, and Kang for bipartite graphs.