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Abstract. We generalize the extension theorem of Ajrapetyan-Henkin [AH81] and Boggess-
Polking [BP82] to wedge-like domains V in a generic manifold M . For each complex tangent
vector to M , we introduce its complex angle with respect to V and show that CR-functions on
V have natural extension in the direction of the Levi form of any tangent vector whose angle is
greater than π/2. This gives an explanation of the extension phenomenon recently discovered
by Eastwood-Graham [EG99,EG01]. We further demonstrate by an example that the angle π/2
is optimal and cannot be replaced by any smaller angle. We conclude by giving applications to
holomorphic extension to a full neighborhood of the reference point.
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1. Introduction

The celebrated theorem of Ajrapetyan-Henkin [AH81] and Boggess-Polking
[BP82] extending classical results of Lewy [L56] states that all (continuous) CR-
functions on a generic submanifold M in CN extend holomorphically to a wedge
in the direction of the convex cone spanned by the values of the (vector-valued)
Levi form of M . Here one starts with a submanifold M and ends with a wedge.
A natural question is to obtain a result generalizing the above one within the
category of wedges with description of the additional directions of extendibility
(see Tumanov [T95a,T95b] for general extension results to wedges without
prescription of the direction).

Given a wedge V in a submanifold M of CN (see §3 for the definition) whose
edge E ⊂ ∂V at a point p ∈ E is a generic (i.e. TpE+iTpE = TpCN ), in general,
CR-functions onV do not extend to a wedge in the direction of each nontrivial val-
ue of the Levi form of M as was recently observed by Eastwood-Graham [EG99,
EG01] already in the case when M is a hypersurface (see [EG99, Example 1.2]
and Example 1.2 below). In this paper we propose an invariant geometric way
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of selecting those Levi form directions that are responsible for the extension, in
particular, explaining the phenomenon discovered in [EG99,EG01].

The (extrinsic) Levi form of M at a point p can be seen as a hermitian form
L = Lp : T c

pM × T c
pM → (TpCN/TpM) ⊗ C, where T c

pM := TpM ∩ iTpM

is the complex tangent space. For every tangent vector w ∈ T c
pM consider the

opening angle 0 ≤ γw ≤ 2π of the plane convex cone Cw ∩ CpV , where CpV

denotes the closed tangent cone to V at p ∈ ∂V (see §3). (We put γw = 0 if
Cw ∩ CpV contains no open cone and γw = 2π if Cw ∩ CpV = Cw.) Define
now the Levi (π/2)-cone of V at p as the convex hull

�π/2
p = �π/2

p (V ) := conv {L(w,w) : γw > π/2} (1)

taken in the space TpCN/TpM . We refer to γw > π/2 as the angle condition.
Throughout this paper we write

pr : TpC
N → TpC

N/TpM

for the canonical projection. Our main result provides holomorphic extension of
CR-functions on V in all additional directions of �π/2

p (V ):

Theorem 1.1. Let V be a wedge with edge E at p in a C4-smooth submanifold
M ⊂ CN , where E is a C2-smooth generic submanifold of CN . Suppose that
the interior of the cone �

π/2
p ⊂ TpCN/TpM is nonempty. Then all continuous

CR-functions on V extend holomorphically to a wedge V ′ in CN with edge E at
p such that

(i) V ′ contains a neighborhood of p in V ;
(ii) pr(CpV

′) ⊃ �
π/2
p .

Moreover, the extension of each CR-function continuous up toE is also continuous
up to E ∪ V .

In particular, the wedge V ′ is contained in the polynomial, rational and
holomorphic (with respect to any Stein neighborhood) convex hulls of V . The
following example shows that π/2 for the cone �

π/2
p cannot be replaced by any

smaller angle:

Example 1.2. Consider the hypersurface

M := {z = (z1, z2, z3) ∈ C
3 : Im z3 = (Im z1)

2 − (Im z2)
2}

and the wedge V := {z ∈ M : Im z1 > |Im z2|} with edge E := R3 at 0. Then for

w := (1, 1 − ε − i
√

2ε, 0) ∈ T c
0 M

with ε > 0 arbitrarily small, the Levi form L(w,w) points down and the angle
γw < π/2 is arbitrarily close to π/2. However, any domain of holomorphic ex-
tension of CR-functions on V must be contained in the half-space Im z3 > 0.
Hence the Levi form of a vector w with γw arbitrarily close to π/2, may not be
in general a direction of extension as in Theorem 1.1.
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The assumption that the edge E is generic in Theorem 1.1 is also important
and cannot be dropped as the following example shows:

Example 1.3. Consider the hypersurface M := {z = (z1, z2) ∈ C2 : Im z2 =
|z1|2} and, for a real number 1/2 < α < 1, the wedge V := {z ∈ M : Im z2 <

Im z
1/α
1 } with edge E := {z ∈ M : z1 = 0} at 0. Then, for w := (1, 0) ∈

T c
0 M , we have L0(w,w) > 0 and γw = πα > π/2. However, the CR-function

f (z1, z2) := (z2−z
1/α
1 )−1 on V does not extend holomorphically to any wedge V ′

as in Theorem 1.1. (It can be shown that the polynomial, rational and holomorphic
convex hulls of V do not contain any wedge in C2 with edge E, see e.g. [ZZ01].)

If one restricts attention to vectors w ∈ T c
pM ∩ iTpE, then the angle condition

in (1) is automatically satisfied. Indeed, since E is generic at p, it is easy to see
that the angle γw is always either 2π or π depending on whether w belongs to T c

pE

or not. For Levi directions arising from vectors w of this kind, a similar extension
result is due to [AH81,BP82] for γw = 2π and [BZ01] for γw = π . Another case
has been treated in [EG99,EG01], where the cone CpV contains zero directions
of the Levi form with nonzero directions arbitrarily close. This situation can be
also explained by Theorem 1.1, since the angle γw may be chosen arbitrarily close
to π , in particular, greater than π/2. On the other hand, the following example
shows that one may really need to consider γw arbitrarily close to π/2 to get new
directions of extension in TpCN/TpM:

Example 1.4. Consider the hypersurface

M := {z = (z1, z2, z3) ∈ C
3 : Im z3 = |z1|2 + |z2|2 − (2 + ε)Im z1z2}

for a small ε > 0. Then the Levi form is negative only for vectors w ∈ T c
0 M

whose direction is sufficiently close to that of w0 = (−1 + i, 1 + i, 0), for which
L0(w0, w0) = −2ε < 0. We choose V := {z ∈ M : Im z1 > 0, Im z2 > 0} so
that γw0 = π/2. Then there exist vectors w arbitrarily close to w0 with γw > π/2
in view of Lemma 2.1 in §2 and hence Theorem 1.1 yields extension to a wedge on
the negative side of M . On the other hand, for any vector w with L0(w,w) < 0,
the angle γw must be close to π/2.

The previously known technique for proving wedge-extendibility of CR-func-
tions is based on attaching smooth (C1,β) analytic discs to E∪V which is possible
in any direction w ∈ T c

pM ∩ TpE and then on filling a wedge by these discs. In
the other directions w ∈ T c

pM with π/2 < γw < π considered in this paper, such
discs may not exist and hence other methods are required. Our approach here
consists of two main steps. Using tools developed in [ZZ01], we first attach non-
smooth analytic discs to V that will not fill a wedge anymore but rather a smaller
region V ′ that we call α-wedge, where some directions are bounded by αth pow-
ers of others for some α > 1/2. (Here α is chosen such that γw = απ .) Then
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we attach analytic discs to properly chosen submanifolds M̃ approximating M

such that, over a certain region, M̃ is contained in V ′. For this step, the property
α > 1/2 is crucial and guarantees that the directions of (1/α)th powers are not
affected by the Taylor expansion of (the defining functions of) M .

We conclude by giving an application of Theorem 1.1 to regularity and holo-
morphic extension of CR-functions.

Corollary 1.5. LetM ⊂ CN be aC4-smooth submanifold,V1, . . . , Vn be a wedg-
es in M with the same edge E at p, where E is a generic C2-smooth submanifold.
Suppose that

(i) CpV1 + · · · + CpVn = TpM;
(ii) �π/2

p (V1)+ · · · + �
π/2
p (Vn) = TpCN/TpM .

Then every continuous function f on E that admits continuous CR-extension
to each Vj , also extends holomorphically to a neighborhood of p in CN . In
particular, f has the same smoothness as E and its extension to each Vj the
same smoothness as M .

In the case of two wedges V1, V2 with opposite directions in a hypersurface M

containing zero directions of the Levi form (of M) having mixed signature similar
results are due to Eastwood-Graham [EG99,EG01].

2. Equivalent version of the angle condition

The angle condition γw > π/2 has a simple interpretation in terms of the direc-
tional cone of V . For any generic submanifold E ⊂ M ⊂ CN at a point p ∈ E

we have the canonical identification

(iTpE ∩ TpM)/T c
pE → TpM/TpE.

Then, if V ⊂ M is a wedge in M with edge E at p, the (closed) cone CpV

can be represented, modulo T c
pE, by an open cone i� ⊂ iTpE ∩ TpM with

span(i�)⊕TpE = TpM such that the interior of CpV coincides with TpE+ i�.
We have:

Lemma 2.1. For w ∈ T c
pM , the condition γw > π/2 holds if and only if, for

suitable eiθ ∈ S1, w̃ ∈ T c
pM arbitrarily close to w and for any decomposition

eiθ w̃ = a + ib ∈ TpE + iTpE mod T c
pE,

one has b ± a ∈ � mod T c
pE.
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Proof. By adding a suitable vector v ∈ � to w, we can assume that the plane Cw

intersects the interior of CpV in a plane cone of angle greater than π/2. The last
condition holds if and only if, for some choice of eiθ , a, b as above, one has

%((1 − τ)α(a + ib)) ∈ i� for all τ ∈ ' (2)

for someα > 1/2, where' ⊂ C denotes the unit disc and% : TpM → span(i�)

is the natural projection along TpE. The inclusion in (2) is clearly equivalent to
b + ta ∈ � for all t ∈ (−1 − ε, 1 + ε) for some ε > 0 and hence to b ± a ∈ �.

��
A particular case when a = 0 that is eiθw = ib ∈ i�+T c

pM or w ∈ T c
pM was

considered in [BZ01]. It is clear that this happens precisely when either γw = π

or γw = 2π .

3. Preliminaries

We begin by defining open subsets in real manifolds having cone property. By
a cone � in the euclidean space Rm we always mean a subset invariant under
multiplication by positive real numbers. A subcone �′ ⊂ � is said to be strictly
smaller if �′ \ {0} is contained in the interior of �.

Definition 3.1. An open subset V in a real C1-smooth manifold M is said to have
the cone property at a boundary point p ∈ ∂V with respect to an open cone
� ⊂ TpM if, for any strictly smaller subcone �′ ⊂ � and some (and hence any)
local coordinates on M in a neighborhood of p, one has x+ y ∈ V for all x ∈ V

and y ∈ �′ sufficiently close to p and 0 respectively, where the sum is taken with
respect to the given coordinates.

We also say that V has the cone property without specifying � if there exists
� for which the cone property holds. It is clear from the definition that, if a given
V ⊂ M has the cone property with respect to each of two cones �1 and �2,
then the cone property also holds for the sum �1 + �2. Furthermore, among all
such cones there is unique maximal one, namely the sum of all of them that is
automatically convex. We call it the tangent cone to V at p and denote by CpV .

An important special case of a subset with cone property is a wedge. We call
an open subset V ⊂ M a wedge with edge E at p, where E is a submanifold of
M through p, if V has cone property at p ∈ ∂V and if E ⊂ ∂V . In this case the
tangent cone CpV is automatically invariant under addition of vectors in TpE and
can be canonically represented by a normal cone � ⊂ TpM/TpE that we call the
directional cone of the wedge V at p.

Finally, recall that a real submanifold E ⊂ CN is called generic at a point
p ∈ E if TpE+ iTpE = CN . Generic submanifolds are precisely the noncharac-
teristic submanifolds for the system of Cauchy-Riemann equations. If M ⊂ CN
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is another submanifold containing E which is generic at p, then M is also
generic at p. As usual continuous functions are called CR-functions if they
are solutions of the tangential Cauchy-Riemann equations in distributional
sense (see e.g. [BER99]).

4. Attaching nonsmooth analytic discs

We discuss now about attaching analytic discs to a generic submanifold M of CN .
The reader is referred to [B91,T96,BER99] for details. By an analytic disc in CN

we mean a holomorphic mapping A from ', the unit disc in C, into CN which
extends at least continuously to '; we still denote by A the image A('). We say
that A is attached to M if A(∂') ⊂ M . Usually one considers smooth (Ck,β with
k ≥ 1) discs. (The reason of the fractional regularity is due to the continuity of the
Hilbert transform in the corresponding classes of functions.) We will also make
an extensive use of the main technical tools developed in [ZZ01] for attaching
analytic discs that are C1 except at τ = 1, where they are only Hölder-continuous.
For 1

2 < α < 1, we put
β := 2α − 1.

For any real δ, consider the principal branch of (1−τ)δ on ' that is real on the in-
terval (0, 1); note that (1−τ)2α ∈ C1,β . As in [ZZ01], define Pα(∂') ⊂ Cα(∂')

to be the subspace of all linear combinations of (1 − τ)α, (1 − τ̄ )α and functions
in C1,β(∂') and Pα(') ⊂ Cα(') to be the subspace of linear combinations of
(1 − τ)α, (1 − τ̄ )α and functions in C1,β('). These subspaces become Banach
spaces with the norm of a disc being the sum of theCα-norm of its nonsmooth term
and the C1,β-norm of the remainder. It is easy to see that the Hilbert transform is
a bounded operator on Pα('). We choose coordinates (z, w) ∈ Cl × Cn = CN ,
z = x + iy, where M is defined by y = h(x,w) for a vector valued function
h = (h1, . . . , hl) with h(0) = 0, h′(0) = 0. It is well-known (cf. [B91]) that,
given a sufficiently small holomorphic function w(τ) in ' that is Cα in ' and
a sufficiently small vector x ∈ Rl , there exists a (unique) small analytic disc
A(τ) = (z(τ ), w(τ)) attached to M in the same class with prescribed small value
x(1) = x. It is shown in [ZZ01] that the same statement also holds in the class
Pα defined above and that the obtained disc A depends smoothly on w(·) and x.
More precisely, one has:

Proposition 4.1 ([ZZ01]). Let M be Ck+2-smooth (k ≥ 1) and fix α > 1/2. Then
for every sufficiently small x ∈ Rl and holomorphic function w(·) ∈ Pα(') there
is an unique sufficiently small analytic disc A = (z(·), w(·)) ∈ Pα with x(1) = x

attached to M that depends in a Ck fashion on w ∈ Pα and x ∈ Rl .

It is further shown in [ZZ01] that, if A(1) = 0 and if the coordinates (z, w)

are chosen as above, the component z(τ ) is in fact in C1,β .
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5. Filling α-wedges by nonsmooth analytic discs

Our fist main step in proving Theorem 1.1 will be to obtain a weaker statement
about the extension to a region smaller than a wedge. More precisely, given sub-
manifoldsM ⊂ M ′ ⊂ CN and an open subset, define anα-wedge inM ′ overV at a
pointp ∈ ∂V in the additional directions of an open convex cone� ⊂ TpM

′/TpM

to be the open subset of M ′ of the form

V ′ = {z ∈ W : dist(z, V ) < c dist(z, ∂V )1/α}, (3)

where W is a wedge in M ′ with edge M at p and c is a positive constant. We say
that an α-wedge over V is of class C1,δ if the submanifold M ′ can be chosen to
be of class C1,δ.

The following statement is the main technical tool for the proof of Theorem 1.1:

Theorem 5.1. Let M ⊂ CN be a generic C4-smooth submanifold and V ⊂ M be
a domain with cone property at a point p ∈ ∂V . Fix α > 1/2 and w ∈ T c

pM such
that

γw > απ, Lp(w,w) �= 0. (4)

Then analytic discs in CN attached to V fill an α-wedge over V at p of class C1,δ

for some 0 < δ < 1 with one-dimensional additional direction arbitrarily close
to that of Lp(w,w).

Here the new α-wedge is understood in a submanifold M ′ with boundary M

at p. When V is a wedge with generic edge E, then the arguments of Baouendi-
Treves [BT81] can be used to show that continuous CR-functions on a
neighborhood of p in V can be uniformly approximated on compacta by holomor-
phic polynomials. Hence, replacing V by such a neighborhood, we obtain from
Theorem 5.1:

Corollary 5.2. Let V be a wedge in a C4-smooth submanifold M ⊂ CN with
generic edge E at a point p. Then all continuous CR-functions on V admit CR-
extension to an α-wedge over V at p of class C1,δ for some 0 < δ < 1 with
one-dimensional additional direction arbitrarily close to that of Lp(w,w).

Indeed, given a sequence of holomorphic polynomials converging uniformly
to a continuous CR-function onV on compacta, it also converges uniformly on the
union of discs by the maximum principle. Hence, if the discs fill an α-wedge over
V , the sequence of polynomials converges there to a continuous CR-function.

Remark 5.3. If a CR-function is of class Cκ for some 1 ≤ κ ≤ ∞, the sequence
of polynomials can be chosen to converge in the Cκ -norm and therefore the
CR-extension is also Cκ .
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Proof of Theorem 5.1. Choose coordinates (z, w) ∈ Cl × Cn, z = x + iy, with
p = 0 in which M is defined by y = h(x,w), where h := (h1, . . . , hl) has no
harmonic terms of order 2. Let w = w0 ∈ T c

pM satisfy (4). By multiplying w0

with a nonzero complex number we may assume that (1 − τ)α
′
w0 ∈ � for some

α′ > α and all τ ∈ ', where � is a suitable strictly smaller subcone of the interior
of CpV . For a small real parameter η > 0 set

w(τ) = wη(τ) := η(1 − τ)αw0.

We attach discs A(τ) = Aη(τ) to M with “w-components” w(τ) (the above
choice of w0 will guarantee that our discs with be automatically attached to V ).
We write

z(τ ) = u(τ)+ iv(τ ), τ = reiθ ∈ ',

and solve the Bishop’s equation

u(τ) = −T1h(u(τ), w(τ)), τ = eiθ ∈ ∂',

where T1 is the Hilbert transform on ∂' normalized by the condition T1(·)|τ=1 =
0. By Proposition 4.1, for small η, this equation has solution u(·) in Pα with
u(1) = 0. It is proved in [ZZ01] that u(·) is in C1,β and moreover η �→ vη,
R → C1,β is of class Ck. Then also v := T1u ∈ C1,β and η �→ vη is of class Ck.
In particular, for the radial derivative ∂rv, we have

∂rv = ∂rv|η=0 + (∂r v̇|η=0)η + (∂r v̈|η=0)η
2 + o(η2), η → 0, (5)

where the dots stand for the derivatives in η. Since h(0) = 0 and h′(0) = 0,
we have v|η=0 ≡ 0 and v̇|η=0 ≡ 0. Hence also u̇|η=0 ≡ 0 because u̇ is related
to v̇ by the Hilbert transform. As for v̈, note that double differentiation in η of
v(·) = h(u(·), w(·)) along ∂' yields

v̈|η=0 = Lp(w0, w0)|1 − τ |2α, τ ∈ ∂'. (6)

Note that for τ = eiθ , we have |1 − τ |2α = |θ |2α + o(|θ |2α) ∈ C1,β(∂'). Hence
the harmonic extension of |1 − τ |2α from ∂' to ' is also of class C1,β(∂'). By
the Hopf Lemma, the radial derivative of this harmonic extension at τ = 1 is
negative and we have by (6),

∂r v̈|τ=1,η=0 = cLp(w0, w0), c < 0.

Hence it follows from (5) that we can fix sufficiently small η > 0 such that
∂rv /∈ TpM and such that ∂rv points to a direction arbitrarily close to that of
Lp(w0, w0). We write Ap for the corresponding analytic disc. The above con-
struction can be used to obtain a family of attached analytic discs Aq for q ∈ V

near p having the same “w-component” and such that Aq(1) = q. The conclusion
about filling an α-wedge over V follows now from a result of [ZZ01] that we state
here for the reader’s convenience:
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Lemma 5.4. ([ZZ01]) Let V ⊂ Rl × {0} ⊂ Rl × Rm−l be an open subset with
Lipschitz boundary at 0 ∈ ∂V . Let A : [0, 1] × V → Rm be a map of the form

ϕ(t, q) = q + tαa(q)+ b(t, q), 0 < α < 1,

with a(·) and b(·, q), q ∈ V , being of class C1,γ for some 0 < γ ≤ 1
α
− 1 such

that a(q) ∈ C0V × {0}, b(0, q) ≡ 0 and ∂tb(0, 0) /∈ Rl × {0}. Assume that the
induced map q �→ b(·, q) between V and C1,γ is also of class C1,γ . Then there
exists ε > 0, a neighborhood U of 0 in Rl × {0} and a submanifold M ′ of class
C1,γ 2

with boundary Rl ×{0} at 0 in the direction of ∂tb(0, 0) such that A defines
a homeomorphism between (0, ε)× (V ∩U) and an α-wedge over V at 0 in M ′.

��
If (4) holds for several vectors w1, . . . , wl ∈ T c

pM such that Lp(w1, w1), . . . ,

Lp(wl, wl) is a basis in TpCN/TpM , then CR-functions on V extend to a full-
dimensional α-wedge over V whose additional directions can be chosen to be
in any cone strictly smaller than the convex span of the above basis. This result
will follow from the proof of the “edge-of-the-wedge” theorem of Ajrapetian and
Henkin [AH81] in the version of [A87] (see also [T96]), where attached analytic
discs have been used. More precisely, for any positive real number α with α > 1

2 ,
define the Levi απ -cone �απ

p ⊂ TpCN/TpM to be the convex hull

�απ
p := conv{Lp(w,w) : w ∈ T c

pM, γw > απ}.
Corollary 5.5. In the setting of Theorem 5.1, assume that �απ

p has a nonempty
interior in TpCN/TpM . Then for any strictly smaller subcone �′ ⊂ �απ

p , analytic
discs attached to V fill an α-wedge V ′ over V at p with additional directions
of �′. In particular, all continuous CR-functions on V that are approximated by
polynomials on compacta admit holomorphic extension to V ′.

Remark 5.6. If the boundary ∂V does not contain a generic submanifold E, the
classical arguments of [BT81] cannot be applied to show that any continuous CR-
function on V is approximated by polynomials on compacta, even after replacing
V by a smaller neighborhood of p in V . Nevertheless it is shown in [ZZ01] by a
different construction that holomorphic extension of CR-functions to an α-wedge
can be obtained also in this case.

Proof of Corollary 5.5. We write �1 ⊂⊂ �2 if �1 is strictly smaller than �2.
Given �′ ⊂⊂ �απ

p as above, consider a polyhedral approximation of �′ in �απ
p :

�′ ⊂⊂ conv{Lp(w1, w1), . . . , Lp(ws,ws)} ⊂ �απ
p . (7)

By Corollary 5.2, all (continuous) CR-functions on V admit CR-extensions to
α-wedges Ṽ1, . . . , Ṽs over V at p of class C1,δ with additional directions of
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vectors v1, . . . , vs arbitrarily close to those of Lp(w1, w1), . . . , Lp(ws,ws)

respectively. Denote by W1, . . . ,Ws the corresponding wedges with edge M

at p as in (3). By (7), we can assume �′ ⊂⊂ conv{v1, . . . , vs}. Then there
exists a constant C > 0 such that for any z0 ∈ V and 1 ≤ j ≤ s,

{z ∈ Wj : ‖z− z0‖ < c dist(z0, ∂V )1/α} ⊂ Ṽj . (8)

By repeating the arguments of the proof of [T96, Theorem 4.1] one can show that
all continuous CR-functions on V admit holomorphic extensions to a subset

{z ∈ B(p)+ �′ : ‖z− z0‖ < c′ dist(z0, ∂V )1/α}, (9)

where B(p) is a neighborhood of p in M and c′ > 0 is a constant, both cho-
sen independently of z0 (we have identified �′ with a cone in CN in the normal
direction to TpM). Such a choice can be obtained by rescaling the submanifold in
(8) and using the uniformity of the construction of Tumanov [T96] with respect
to the C1,δ-norms of the submanifolds and using his regularity results [T93] for
parameter dependence of solutions of Bishop’s equation. It follows now from
(3) that the subset (9) contains an α-wedge over V with additional directions
of �′. ��

6. Passing from α-wedges to wedges

In this section we will assume that V ⊂ M is a wedge with generic edge E at p.
We denote by (CpV )0 the interior in TpM of the tangent cone CpV of V at p. As
before we fix α > 1/2.

Proposition 6.1. Let V be a wedge in M with generic edge E at p and V ′ be an
α-wedge over V at p with one-dimensional additional direction. Then the union
of analytic discs attached to V ∪ V ′ contains a wedge V ′′ with edge E at p in
a submanifold M ′′ ⊂ CN with dim M ′′ = dim M + 1 such that V ′′ contains a
neighborhood of p in V and pr(CpV

′′) is arbitrarily close to the additional direc-
tion of V ′. In particular, all continuous functions on V admitting CR-extension to
V ′ are also CR-extendible to a wedge with edge E at p as above.

Proof. Since E is generic, by shrinking V and V ′, if necessary, we may assume
that continuous functions on V ∪V ′ that are CR on V ′ are uniformly approximat-
ed by holomorphic polynomials on compacta. By choosing suitable holomorphic
coordinates z = x+ iy ∈ CN in a neighborhood of p we may assume that p = 0,

T0E ⊂ {yN−1 = yN = 0}, T0M ⊂ {yN = 0}, (0, . . . , 0, i, 0) ∈ int(CpV )

and the additional direction of V ′ is that of (0, . . . , 0, i). We write z =
(z′′, zN−1, zN) ∈ CN , z′ = (z′′, zN−1) ∈ CN−1 and denote by σ : B(p) → M

any transversal projection from a neighborhood B(p) of p in CN to M . In the
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sequel we write cj (j = 1, 2, . . . ) for positive constants that may change during
the proof. Since M is of class C2, we have

yN > −c1‖(z′, xN)‖2, z = (z′, xN + iyN) ∈ M

with c1 suitably chosen. Let W be a wedge with edge M at p as in (3). Then there
exist c1, c2 > 0 such that

{z ∈ W : σ(z) ∈ V, c1‖(z′, xN)‖2 < yN < −c1‖(z′, xN)‖2

+c2dist(z, ∂V )1/α} ⊂ V ′. (10)

Let further Ṽ ⊂ V be a wedge with edge E at p whose directional cone at p is a
sufficiently small cone around [(0, . . . , 0, 1, 0)] ∈ TpM/TpE. Then for z near p
with σ(z) ∈ Ṽ , we have

dist(z, ∂V ) > c1|yN−1| − c2‖(z′′, xN−1, xN)‖2 (11)

for suitable constants c1, c2 > 0, where we have used that E is of class C2. From
(10) and (11) we conclude

{z ∈ W : σ(z) ∈ Ṽ , c1‖(z′, xN)‖2 < yN < −c1‖(z′′, xN−1, xN)‖2

+c2|yN−1|1/α} ⊂ V ′. (12)

We shall now define a deformation M̃ of M whose part will enter the region in
the left-hand side of (12). It is easy to see from the construction that, if c3 is
sufficiently large,

M̃ := {z ∈ W : yN = c3‖(z′, xN)‖2}
is a submanifold of CN near p of the same dimension as M . Furthermore we
can shrink M̃ around p and choose a sufficiently large constant c4 for which (12)
implies the inclusion

{z ∈ M̃ : σ(z) ∈ Ṽ , yN−1 > c4‖(z′′, xN−1, xN)‖2α} ⊂ V ′. (13)

We now construct an analytic disc attached to M̃ ∩ V ′ that passes through 0
and is not tangent to M there. Consider a holomorphic function zN−1(·) on the
unit disc ' that is C1,β (β = 2α − 1) up to the boundary with zN−1(1) = 0 and
satisfying

yN−1(τ ) ≥ c5|xN−1(τ )|2α, τ ∈ '. (14)

By solving the Bishop’s equation for sufficiently small zN−1 (in the C1,β norm),
we can find a small analytic disc z(τ ) with z(1) = 0 and the nontrivial tangential
derivative ∂θz(1) �= 0, attached to M̃ with the component zN−1(τ ) prescribed
above such that the derivatives ∂θz(τ ), τ ∈ ', are arbitrarily close to the plane
{(0, . . . , 0)}×C×{0} ⊂ TpM . Then we can achieve σ(z(τ )) ∈ Ṽ for all z ∈ '.
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Furthermore, since ‖(z′′(τ ), zN(τ ))‖ ≤ c6|1 − τ | with c6 arbitrarily small and
|xN−1(τ )| ≥ c7|1 − τ | for some c7 and all τ ∈ ∂' in a suitable neighborhood U

of 1, we conclude

|xN−1(τ )|2α ≥ 1

2
|xN−1(τ )|2α + c8‖(z′′(τ ), xN(τ))‖2α

with c8 arbitrarily large. Therefore z = z(τ ) is contained in the left-hand side of
(14) for z ∈ ∂' ∩ U \ {1}. On the other hand, it is clear from the construction
that z(τ ) can be chosen to be contained in the left-hand side of (14) also for
τ ∈ ∂' \ U . It follows that z(τ ) ∈ V ′ for all τ ∈ ∂' \ {1}. Furthermore, due to
the construction of M̃ and the Hopf lemma, the radial derivative ∂rz(1) is arbi-
trarily close to the subspace {(0, . . . , 0)}×C2 ⊂ CN−2 ×C2 and ∂rz(1) /∈ TpM .
Hence sufficiently small deformations z̃(·) of z(·) with z̃(1) ∈ V fill a wedge V ′′

satisfying the required conclusion. ��
Proof of Theorem 1.1. Fix w ∈ T c

pM with γw > π/2. We may assume that
continuous CR-functions on V are uniformly approximated by holomorphic poly-
nomials on compacta. By Corollary 5.2, all continuous CR-functions on V

extend holomorphically to an α-wedge V ′ over V at p with one-dimensional
additional direction arbitrarily close to that of Lp(w,w). Then we conclude from
Proposition 6.1 that CR-functions on V also extend to wedge V ′′ in a subman-
ifold M ′′ with dim M ′′ = dim M + 1 satisfying the conclusion of the proposi-
tion. In this way we obtain CR-extension to a (dim M + 1)-dimensional wedge
V ′′ with pr(CpV

′′) arbitrarily close to any given Levi form value Lp(w,w) for
γw > π/2.

If a CR-function on V is continuous up to E, it is approximated by poly-
nomials uniformly up to E and hence the extension is continuous up to E ∪
V . For these function, their holomorphic extension to a full-dimensional wedge
V ′ with pr(CpV

′) ⊃ �
π/2
p can be obtained from the mentioned above proof

of a strong version of the edge-of-the-wedge theorem given by Tumanov [T93,
T96].

If a CR-function is not known to be continuous up to E, the edge E can be
“pushed” insideV reducing the extension problem to the above situation. Then the
conclusion follows from the parameter version of the edge-of-the-wedge theorem
following the arguments of [T93,T96]. ��
Proof of Corollary 1.5. If each of the cones �

π/2
p (V1), . . . , �

π/2
p (Vn) has non-

empty interior, the conclusion follows directly from Theorem 1.1 and from the
edge-of-the-wedge theorem [AH81]. In general, the proof uses Corollary 5.2 and
Proposition 6.1 as above to obtain CR-extension to lower-dimensional wedges
and then again the edge-of-the-wedge theorem. For the last passage one needs the
stronger version of the edge-of-the-wedge theorem assuming only C1,δ-regularity
of the submanifolds that follows from [T93,T96] (see also [A87]). ��
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