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Abstract We give series of explicit examples of Levi-nondegenerate real-analytic
hypersurfaces in complex spaces that are not transversally holomorphically embed-
dable into hyperquadrics of any dimension. For this, we construct invariants attached
to a given hypersurface that serve as obstructions to embeddability. We further study
the embeddability problem for real-analytic submanifolds of higher codimension and
answer a question by Forstnerič.
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1 Introduction

The celebrated Whitney and Nash theorems about embeddings of general smooth and
Riemannian manifolds into their models (affine and euclidean spaces) provide impor-
tant tools for studying geometry of these manifolds. The corresponding embeddability
phenomena for Levi-nondegenerate real hypersurfaces in C

n (with models being the
hyperquadrics in view of the Chern–Moser theory [5]) proves to be more difficult:
On the one hand, Webster [18] showed that any Levi-nondegenerate real-algebraic
hypersurface is holomorphically (and transversally, see Sect. 2) embeddable into a
Levi-nondegenerate hyperquadric (of suitable dimension depending on the hypersur-
face). On the other hand, it has been known since the work of Forstnerič [10] and Faran
[9] that there exist strongly pseudoconvex real-analytic hypersurfaces not admitting
any holomorphic embedding into a sphere in a complex space of any dimension. (More
recently Forstnerič [11] extended these results to embeddings into hyperquadrics.) In
fact, such nonembeddable hypersurfaces have been shown to form a set of the first
category in a suitable natural topology. Despite of this, it appears to be difficult to
obtain explicit examples of such hypersurfaces, none of which seems to be known.
The given proofs used nonconstructive Baire category arguments and did not lead to
concrete examples.

It is one of the goals of the present paper to give explicit examples of nonembedda-
ble real-analytic hypersurfaces of this kind. Such hypersurfaces, in particular, cannot
be algebraic nor even biholomorphically equivalent to algebraic ones in view of the
mentioned result of Webster. Thus we have to involve infinite power series:

Theorem 1.1 Any hypersurface in C
2 given by a convergent power series of the form

Im w = zz̄ + Re
∑

k≥2

ak zk z̄(k+2)! + Re
∑

bkml z
k z̄m(Re w)l , (1.1)

where ak �= 0 for all k and the second sum ranges over all k, m, l satisfying k, m ≥ 2,
k ≤ (m + l)! and m ≤ (k + l)!, is not holomorphically embeddable into a sphere
of any dimension. More generally (see Remark 2.1 below), it is not transversally
holomorphically embeddable into a hyperquadric of any dimension.

As a special case we have, for instance, the following explicit nonembeddable
example:

Corollary 1.2 The hypersurface given in C
2 by

Im w = zz̄ + Re
∑

k≥2

zk z̄(k+2)!, (z, w) ∈ C
2, |z| < ε, (1.2)

for any 0 < ε ≤ 1 is not transversally holomorphically embeddable into a hyperqua-
dric of any dimension.
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Obstructions to embeddability 697

A brief glance at (1.2) reveals the basic nature of this hypersurface: in the expansion∑
Pk(z̄)zk of the right-hand side, the degree of the polynomial Pk(z̄) grows rapidly

with k. These polynomials arise as partial derivatives in z at z = 0 of the complex-
ified defining function of the hypersurface. Our proof of Theorem 1.1 is based on
a construction of certain obstructions to embeddability into hyperquadrics, stated in
Theorem 2.2 below. These obstructions are in fact obtained for hypersurfaces of gen-
eral form, where the role of polynomials Pk(z̄) is played by certain partial derivatives
of the defining function of the given hypersurface evaluated along the Segre varie-
ties (see below for a definition). The mentioned growth condition for the degrees of
polynomials Pk(z̄) is then replaced by rational dependence relations for those partial
derivatives (which need not be polynomials in general). These dependence relations
are precisely the needed obstructions to embeddability. They can also be restated in
terms of invariants attached to a given hypersurface (see Sect. 6) that can be directly
calculated for given examples. We further show that the latter invariants serve as lower
bounds for the minimum possible dimension of the sphere (or hyperquadric), where
the given hypersurface can be holomorphically embeddable (resp. transversally holo-
morphically embeddable). Those minimum dimensions (so-called “CR complexity”)
appear to be important (see, e.g. the recent work of Baouendi et al. [4]), but to our
knowledge, no bounds for them have been previously known.

The nonembeddability into a hyperquadric also implies the nonembeddability into
any Levi-nondegenerate real-algebraic hypersurface as a consequence of the men-
tioned result by Webster. Note that examples of strongly pseudoconvex real-analytic
hypersurfaces that are not biholomorphically equivalent (rather than embeddable) to
any real-algebraic one are known due to Huang et al. [13]. See also Baouendi et al. [2]
for an earlier nonpseudoconvex example. Gausier and Merker [12] gave obstructions
to biholomorphic equivalence to real-algebraic submanifolds for generic real-analytic
submanifolds that are of the tube form, have minimal possible dimension of their
infinitesimal CR automorphism algebra and are minimal and finitely nondegenerate.
In Appendix A we briefly illustrate how our methods can be utilized to obtain further
such obstructions for general generic submanifolds without any restrictions, that can
be used to obtain other examples. However, it remains open whether these examples
are transversally embeddable into real-algebraic hypersurfaces of higher dimension.
Remarkably, embeddings into infinite-dimensional spheres or hyperquadrics always
exist, see Lempert [14,15] and D’Angelo [6,7].

Forstnerič [11] furthermore obtains results on the nonembeddability of “most”
generic submanifolds of higher codimension into real-algebraic generic submani-
folds of possibly higher dimension but the same codimension. However, his method
does not apply to embeddings of CR manifolds of higher codimensions into spheres or
hyperquadrics (having codimension 1) and hence he raises the question (Problem 2.3)
whether also here the set of all embeddable manifolds forms a set of the first category.
We answer this question affirmatively with our method in Theorem 8.4.

The paper is organized as follows. In Sect. 2 we collect some basic material
and notation, state one of the main results about obstructions to embeddability for
hypersurfaces and give large series of explicit nonembeddable examples based on
these results. In Remark 2.4 we illustrate the sharpness of Theorem 2.2 by comparing
the conclusion with the Chern–Moser theory in the case of biholomorphic equivalence.
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698 D. Zaitsev

Section 3 contains the algebraic core of the paper, where we establish transformation
rules for jets of submanifolds and defining functions that may be of independent inter-
est. The most crucial and nontrivial parts are the weight estimates. In Sect. 4 we
apply the abstract results from the previous section to embeddings of hypersurfaces
into hyperquadrics. This leads to obstructions to embeddability of hypersurfaces into
hyperquadrics in terms of their complex defining equations of the form w = Q(z, z̄, w̄)

(with (z, w) not necessarily being the normal coordinates in the sense of [1]). In Sect.
5 we prove Theorem 2.2 in a slightly more general form. In Sect. 6 we attach to every
germ of a real-analytic hypersurface a series of invariant integers that can be used
as lower estimates for the dimension of a hyperquadric, where the hypersurface is
transversally embeddable. In Sect. 7 we obtain lower order obstructions than those
given by Theorem 2.2 in the cases when the CR dimension of the given hypersurface
is high. This extends the phenomenon revealed by the Chern–Moser theory that the
obstructions for M ⊂ C

n+1 from being equivalent to a hyperquadric are of lower
order for n ≥ 2 than for n = 1. A new tool developed here is that of distinguished
submanifolds of the Segre varieties that are invariantly associated with real-analytic
hypersurfaces. Finally in Sect. 8 we extend some of our results to embeddings of
submanifolds of higher codimension into hyperquadrics and give an answer to the
question of Forstnerič mentioned above.

2 Preliminaries and further results

Recall that a real hyperquadric in C
n+1 is a real hypersurface given by

Im w = h(z, z̄) (2.1)

in some linear coordinates (z, w) ∈ C
n × C, where h(z, z̄) is a hermitian form. By

a holomorphic embedding of a real submanifold M ⊂ C
n into a real submanifold

M ′ ⊂ C
n′

we mean a holomorphic embedding H of a neighborhood of M in C
n

into C
n′

with H(M) ⊂ M ′. An embedding H is said to be transversal to M ′ if
H∗(TxC

n) + TH(x)M ′ = TH(x)C
n′

whenever x ∈ M . We say that M is transversally
holomorphically embeddable into M ′ ⊂ C

n′
if there exists a transversal holomor-

phic embedding of M into M ′. The transversality assumption is used to avoid trivial
embeddings of M into complex affine subspaces inside M ′. In case M and M ′ are
hypersurfaces, transversality of an embedding of M into M ′ also guarantees that the
Levi form of M coincides with the restriction of that of M ′.

Remark 2.1 An embedding of a submanifold M of positive CR dimension into a strictly
pseudoconvex hypersurface M ′ is automatically transversal. (Recall that the CR dimen-
sion of M at p ∈ M is the complex dimension of the complex tangent space T c

p M :=
Tp M ∩ iTp M .) Indeed, for p ∈ M , write L : T c

p M × T c
p M → (Tp M/T c

p M) ⊗ C

for the Levi form and use the corresponding notation for M ′. If H is any holomor-
phic map of a neighborhood of M in C

n into C
n′

with H(M) ⊂ M ′, then one has
H∗(T c

p M) ⊂ T c
H(p)M ′ and H∗L(u, u) = L ′(H∗u, H∗u) for u ∈ T c

p M . If H is an
embedding, one has H∗u �= 0 for u �= 0. Then, since M ′ is strongly pseudoconvex,
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Obstructions to embeddability 699

one has L ′(H∗u, H∗u) �= 0 and therefore H∗L(u, u) �= 0. The latter is a condition in
(TH(p)M ′/T c

H(p)M ′) ⊗ C, which easily implies the transversality.
The reader is referred to Ebenfelt and Rothschild [8] for a more general and detailed

analysis of transversality of holomorphic maps between CR manifolds of the same
dimension and to Baouendi et al. [3] for holomorphic maps between hypersurfaces of
different dimensions.

Let M ⊂ C
n+1 be a real-analytic hypersurface with a fixed reference point p ∈ M

that we shall assume to be 0 for simplicity. We choose local holomorphic coordinates
Z = (z, w) ∈ C

n × C defined in a neighborhood of 0 and vanishing at 0, together
with a real-analytic defining function ρ(Z , Z̄) of M (that we think of as a power
series in (Z , Z̄) convergent in a neighborhood of the origin) satisfying ρw(0, 0) �= 0.
Recall that the Segre variety of a point ζ ∈ C

n+1, associated to M , is defined by
Sζ := {Z : ρ(Z , ζ̄ ) = 0} (see, e.g. [17] for basic facts about Segre varieties). In par-
ticular, we shall consider the Segre variety S0 corresponding to the reference point 0.
We shall always assume that S0 is connected. We use the subscript notation (sometimes
separated by commas) for the partial derivatives, i.e.

ρzβws = ρzβ ,ws = ∂ |β|+sρ

∂zβ1
1 . . . ∂zβn

n ∂ws
,

for a multiindex β = (β1, . . . , βn) ∈ N
n and an integer s ∈ N (where we keep the

usual convention that N begins with 0). To the derivatives of ρ, we assign the following
weights that will appear natural in the transformation rules below:

wt ρzαws := 2|α| + s − 1, α ∈ N
n, s ∈ N. (2.2)

Thus the derivative ρw is the only one with weight 0 and hence not contributing
to the total weight. Therefore we shall count it separately, denoting by degρw

P the
degree of the polynomial P in the variable ρw (i.e. the maximal power of ρw that
appears in P).

Theorem 2.2 Let M ⊂ C
n+1 be a real-analytic hypersurface through 0 given by

ρ(Z , Z̄) = 0 with ρw(0, 0) �= 0. Suppose that M is transversally holomorphically
embeddable into a hyperquadric in C

n+m+1. Then for any set of m + 1 multiindices
α j ∈ N

n, |α j | ≥ 2, j = 1, . . . , m + 1, there exists an integer k with K := { j : |α j | =
k} �= ∅ such that the partial derivatives of ρ satisfy a relation of the form

∑

j∈K

Pj (ρzβws (0, ζ̄ )) ρzα j (0, ζ̄ ) = R(ρzβws (0, ζ̄ )), ζ ∈ S0, (2.3)

where Pj (ρzβws (0, ζ̄ )) and R(ρzβws (0, ζ̄ )) are polynomials in the partial derivatives
ρzβws (0, ζ̄ ) with 0 < |β| + s ≤ k, 0 < |β| < k, such that not all Pj (ρzβws (0, ζ̄ ))

identically vanish in ζ ∈ S0. Moreover, Pj and R can be chosen satisfying in addition
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700 D. Zaitsev

the following weight and degree estimates:

wt Pj ≤ (2k − 2)(l − 1), wt R ≤ (2k − 2)l + 1,

degρw
Pj ≤ (2k − 2)l, degρw

R ≤ (2k − 2)l + 1, (2.4)

where l ≥ 1 is the number of all j with |α j | ≤ k.

In fact, we shall prove a more general version of Theorem 2.2 in the form
Theorem 5.1 below, where the Segre variety S0 is replaced by any irreducible subva-
riety through 0. In the special case when M is rigid (in the sense of Baouendi–Roths-
child), Theorem 2.2 can be stated in the following simplier form without referring to
Segre varieties. The proof is straightforward.

Corollary 2.3 Let M ⊂ C
n+1 be a real-analytic hypersurface through 0 given in its

rigid form by Im w = ϕ(z, z̄), (z, w) ∈ C
n × C. Suppose that M is transversally

holomorphically embeddable into a hyperquadric in C
n+m+1. Then for any set of

m + 1 multiindices α j ∈ N
n, |α j | ≥ 2, j = 1, . . . , m + 1, there exists an integer k

with K := { j : |α j | = k} �= ∅ such that the partial derivatives of ϕ satisfy a relation
of the form

∑

j∈K

Pj (ϕzβ (0, χ̄)) ϕzα j (0, χ̄) = R(ϕzβ (0, χ̄)), χ ∈ C
n, (2.5)

where Pj (ϕzβ (0, χ̄)) and R(ϕzβ (0, χ̄)) are polynomials in the partial derivatives
ρzβ (0, χ̄) with 0 < |β| < k, such that not all Pj (ρzβ (0, χ̄)) identically vanish in
χ . Moreover, Pj and R can be chosen satisfying in addition the following weight
estimates:

wt Pj ≤ (2k − 2)(l − 1), wt R ≤ (2k − 2)l + 1, (2.6)

where l ≥ 1 is the number of all j with |α j | ≤ k.

Remark 2.4 We here consider the special case m = 0, where the conclusion of
Theorem 2.2 can be compared with that of the Chern–Moser theory [5]. For m = 0,
Theorem 2.2 gives obstructions preventing M from being (locally) biholomorphically
equivalent to a hyperquadric. Of course, the full set of such obstructions is known
due to the Chern–Moser normal form [5], whose actual computation, however, may
be hard in concrete cases. On the other hand, Theorem 2.2 may be applied directly
in given coordinates instead of the normal coordinates obtained through the Chern–
Moser normalization. For instance, for a single multiindex |α| = 2, Theorem 2.2
yields (with k = 2, l = 1) a relation

ρzα = R(ρzβ , ρzβw, ρw2 , ρw), |β| = 1, (2.7)

where R is a polynomial of weight ≤ 3 and all derivatives are evaluated at (0, ζ̄ ),
ζ ∈ S0. Thus, if (2.7) is not satisfied, M is not equivalent to a hyperquadric. In
particular, if M is in its Chern–Moser normal form [5], we have

ρzβw(0, ζ̄ ) ≡ ρw2(0, ζ̄ ) ≡ 0, ρw(0, ζ̄ ) ≡ const, ρzβ (0, ζ̄ ) is linear in ζ̄ .
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Obstructions to embeddability 701

Then (2.7) means that any 2nd order derivative ρzα (0, ζ̄ ) is a polynomial in ζ̄ of degree
≤ 3. We now compare this with the normal form M = {Im w = ∑

aαµs zα z̄µ(Re w)s},
where normalization conditions are imposed, in particular, on the coefficients aαµ0
with |µ| ≤ 3. Here (2.7) means the vanishing of the coefficients aαµ0 with |µ| ≥ 4,
which are exactly the free coefficients that appear in the normal form and hence have
to vanish in order for M to be equivalent to a hyperquadric. Thus the estimates given
by (2.4) are sharp in this case.

Based on Theorem 2.2, one can obtain explicit examples of hypersurfaces that
are not transversally embeddable into hyperquadrics of certain dimensions or into
hyperquadrics of any dimension.

Proof of Theorem 1.1 We write

ρ(Z , Z̄) := −Im w + zz̄ + Re
∑

k≥2

zk z̄(k+2)! + Re
∑

bkml z
k z̄m(Re w)l

with the second sum ranging as in the assumption. Then M is given by ρ(Z , Z̄) = 0,
we have S0 = {w = 0} for the Segre variety of 0 and ρw = − 1

2i , ρz(0, ζ̄ ) = χ̄ , where
ζ = (χ, 0) ∈ S0 ⊂ C

n × C. Furthermore, ρza (0, ζ̄ ) is a polynomial in χ̄ of degree
(a + 2)! for every a ≥ 2, and every other derivative ρzawb (0, ζ̄ ), b ≥ 1, is a poly-
nomial in χ̄ of degree ≤ (a + b)!. By contradiction, assume that M is transversally
holomorphically embeddable into a hyperquadric in some C

2+m . Then, in view of
Theorem 2.2 applied to α j = j +1, j = 1, . . . , m +1, there is a k ≥ 2 with K := { j :
|α j | = k} = {k − 1} and a relation (2.3) with Pk−1(ρzβws (0, ζ̄ )) and R(ρzβws (0, ζ̄ ))

satisfying (2.4). In particular, we have wt R ≤ (2k −2)(k −1)+1 in view of l = k −1.
Since wt ρzawb = 2a + b − 1, we have deg ρzawb (0, ζ̄ ) ≤ (k+1)!

2k−3 wt ρzawb for every
a, b satisfying a + b ≤ k, a < k. Then it follows that R(ρzβws (0, ζ̄ )) is a polynomial
in ζ̄ whose degree does not exceed

(k + 1)!
2k − 3

wt R ≤ (k + 1)!
2k − 3

((2k − 2)(k − 1) + 1) < (k + 2)!.

This is a contradiction with (2.3) since ρzk (0, ζ̄ )) is of degree precisely (k + 2)!. The
proof is complete. 
�

3 Some algebraic operations with multilinear functions and transformation
formulas

3.1 An algebra of symmetric multilinear functions

We fix a finite-dimensional complex vector space V and denote by Pd , d = 0, 1, . . .,
the space of all symmetric d-linear functions

p : V × · · · × V = V d → C,
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702 D. Zaitsev

and by P := ⊕dPd the corresponding graded direct sum. In case d = 0 we set
P0 := C, i.e. “0-linear” functions are identified with complex numbers. We write
deg p = d for p ∈ Pd\{0}. There is a standard one-to-one correspondence between
Pd\{0} and the homogeneous polynomials on V of degree d obtained by associat-
ing to every p ∈ Pd its evaluation p(v, . . . , v). Then the product of polynomials
induces a natural product on P . However, it will be more convenient for our purposes
to consider another product p1 · p2 on P that differs from the mentioned “polynomial
product” by the factor (d1+d2)!

d1! d2! for p1 ∈ Pd1 , p2 ∈ Pd2 . As a result, there will be
less additional factors in the transformation formulas below. As a motivation, we have
the following equivalent way of defining this product: For p1(v1, . . . , vd1) ∈ Pd1 and
p2(v1, . . . , vd2) ∈ Pd2 set

(p1 · p2)(v1, . . . , vd1+d2) :=
∑

p1(vi1 , . . . , vid1
) p2(v j1, . . . , v jd2

), (3.1)

where the summation is taken over all possible (disjoint) partitions

{1, . . . , d1 + d2} = {i1, . . . , id1} ∪ { j1, . . . , jd2}.

It is easy to see that p1 · p2 so defined is again symmetric in its arguments and hence
p1 · p2 ∈ Pd1+d2 . It is furthermore easy to check that this operation of multiplication
together with the usual addition makes P a commutative associative graded C-algebra
with unit 1 ∈ P0.

We next consider an operation of substitution (or composition). Let A j : V ν j → V ,
ν j ≥ 0, j = 1, . . . , m, be a set of maps, where each A j is symmetric ν j -linear. As
before, a “0-linear” map A j : V 0 → V means by definition a vector in V . We shall
write (A1, . . . , Am) = Aν1,...,νm indicating the degrees as subscripts. For p ∈ Pd with
d ≥ m, we then define the “substitution” p ◦ Aν1,...,νm ∈ Pd−m+ν1+···+νm as follows:

(p ◦ Aν1,...,νm )(v1, . . . , vd−m+ν1+···+νm )

:=
∑

p(A1(va1
1
, . . . , va1

ν1
), . . . , Am(vam

1
, . . . , vam

νm
), vb1 , . . . , vbd−m ), (3.2)

where the summation is taken over all possible partitions

{1, . . . , d − m + ν1 + · · · + νm}
= {a1

1, . . . , a1
ν1

} ∪ · · · ∪ {am
1 , . . . , am

νm
} ∪ {b1, . . . , bd−m}.

Again it is easy to see that the result is symmetric in its arguments and hence is in
Pd−m+ν1+···+νm . It will also be convenient to allow the case m = 0, i.e. consider the
substitution of the empty set ∅ of maps A j into p, where we define p ◦ ∅ := p.

What is the result of the substitution operation applied twice? It is not difficult to see
that such repeated substitution is actually a sum of single substitutions. More precisely,
we have the following elementary lemma, the proof of which is straightforward. We
use the notation deg A j = ν j if A j : V ν j → V is ν j -linear.
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Obstructions to embeddability 703

Lemma 3.1 Let p′ := p ◦ Aν1,...,νm be as before and let Bs : V µs → V , s = 1, . . . , l,
be another collection of symmetric multilinear maps such that the composition p′′ :=
p′ ◦ Bµ1,...,µl is defined (i.e. l ≤ deg p′). Then p′′ is a finite sum of terms of the form
p ◦ Cλ1,...,λs , each with suitable multilinear maps C j : V λ j → V , satisfying

λ1 + · · · + λr ≤ (ν1 + · · · + νm) + (µ1 + · · · + µl).

3.2 Transformation of submanifolds jets via embeddings

Our goal here is to obtain a relation formula between jets of complex submanifolds
and of their embeddings with explicit degree and weight estimates. We consider a
holomorphic embedding H from a neighborhood of 0 in C

n+1 into C
n+m+1 and split

the coordinates as follows: (z, w) ∈ C
n ×C and (z′, w′) ∈ C

n ×C
m+1. Consider com-

plex hypersurfaces S in C
n+1 passing through 0 and their images S′ = H(S) ⊂ C

n+1,
both represented as graphs of holomorphic functions w = Q(z) and w′ = Q′(z′)
respectively. Thus we have the relation

G(z, Q(z)) = Q′(F(z, Q(z))). (3.3)

We want to express the derivatives of Q′ in terms of the derivatives of Q, F and G.
In general, these expressions are rational but we shall make a first order assumption
on H making the relations polynomial. Writing

H(z, w) = (F(z, w), G(z, w)) ∈ C
n × C

m+1 (3.4)

with respect to the chosen coordinates, our main assumption is

Fz(0) = id, Fw(0) = 0, (3.5)

where id stands for the identity n × n matrix. We write Qzk for the full kth derivative
at 0, i.e. Qzk is a k-linear function (Cn)k → C given in terms of the partial derivatives
by

Qzk (v
1, . . . , vk) :=

∑
Qz j1 ,...,z jk

(0)v1
j1 . . . vk

jk , (3.6)

where vs = (vs
1, . . . , v

s
n) ∈ C

n and the summation is taken over all multiindices
( j1, . . . , jk) ∈ {1, . . . , n}k . In case k = 0 we set Qz0 := 1 ∈ C = P0. Similar
notation will be used for G:

Gzkwl (v
1, . . . , vk) :=

∑
Gz j1 ,...,z jk ,wl (0)v1

j1 . . . vk
jk , (3.7)

where the full derivative is only taken with respect to z. The derivatives of F will be
regarded in the same way but will be suppressed in our transformation formula below,
whereas the derivatives of G will appear more explicitly.

We next introduce weights of the derivative terms as follows. We first set

wt Gzswl := 2s + l − 1, wt Qzs := 2s − 1, (3.8)
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and then extend them to compositions by

wt Gzswl ◦ Aν1,...,νa := wt Gzswl + ν1 + · · · + νa,

wt Qzs ◦ Aν1,...,νa := wt Qzs + ν1 + · · · + νa . (3.9)

That is, for every composition, the sum of the total degrees of the multilinear maps
Aν1 , . . . , Aνa is simply added to the weight of Gzswl or Qzs .

Proposition 3.2 Under the normalization assumption (3.5), the full higher order
derivatives of Q and Q′ at 0 are related by the formula

Q′
z′k =

∑
(Gzswl ◦ Aν1,...,νa ) · (Q

zs1 ◦ Bν1
1 ,...,ν1

a1
) · · · · · (Qzsr ◦ Bνr

1 ,...,νr
ar ), (3.10)

where the summation is taken over all (finitely many) indices s, l, sets of indices
{s1, . . . , sr } with r ≥ l, and finitely many sets of multilinear maps Aν1,...,νa and
B

ν
j
1 ,...,ν

j

a j
(including some of them or all being empty sets) depending only on F, such

that the degree of each term on the right-hand side of (3.10) equals k = deg Q′
z′k and

its weight does not exceed 2k − 1 = wt Q′
z′k . Moreover, each term with the empty set

of multilinear maps appears precisely once.

Proof We proceed by induction on k. The case k = 1 is easy and obtained by direct
differentiating (3.3) in z and using the normalization (3.5):

Q′
z′ = Gz + Gw · Qz .

We now assume that (3.10) holds for all k < k0 and take the full k0th derivatives
of both sides in (3.3) evaluated at 0. On the left-hand side we obtain the terms

Gzswl · Qzs1 · · · · · Qzsl , s + s1 + · · · + sl = k0, (3.11)

(with the number l of factors Qzsr being equal to the w-order in Gzswl ). According
to our definition of multiplication of multilinear maps (3.1), we obtain precisely one
term of the form (3.11) for each choice of s, l and of a (possibly empty) set of indices
{s1, . . . , sl}. The weight of (3.11) is

2s + l − 1 +
l∑

r=1

(2sr − 1) = 2k0 − 1,

as desired. Similarly, on the right-hand side, the terms will be of the form

Q′
z′k

(
(F

zs1
wa1 · Q

zs1
1

· · · · · Q
z

s1
a1

), . . . , (F
zsk

wak · Q
zsk

1
· · · · · Q

z
sk
ak

)

)
, (3.12)

with
∑

j (s
j + s j

1 + · · · + s j
a j ) = k0, where we regard Q′

z′k as before as a multilinear
function with k arguments. Here k ≤ k0 and there is precisely one term with k = k0,
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namely Q′
z′k0

itself, where we continue using our normalization (3.5). Thus we express

Q′
z′k0

as the left-hand side minus the terms on the right-hand side with k < k0. For

the latter terms we can use our induction hypothesis that each Q′
z′k , k < k0, is already

given by the formula (3.10). Substituting it into (3.12) and using Lemma 3.1 and the
fact that each Q

zs
j
r

is scalar, we conclude that each term in (3.12) with k < k0 is

expressible as a finite sum of the terms in (3.10). Clearly the total degree of each such
term is always k0.

It remains to show that the weight of each term does not exceed 2k0 − 1. Each term
in (3.12) with k < k0 arises as a composition of a term p ∈ Pm+1

k in (3.10) of weight
≤ 2k − 1 with k multilinear maps

(
F

zs1
wa1 · Q

zs1
1

· · · · · Q
z

s1
a1

)
, . . . ,

(
F

zsk
wak · Q

zsk
1

· · · · · Q
z

sk
ak

)
. (3.13)

We first look at the extreme cases, where all F-derivatives in (3.13) are Fz = id
except one, which is either Fzw · Qzk0−k or Fw2 · Qz · Qzk0−k . The corresponding
compositions are (p ◦ Fzw) · Qzk0−k and (p ◦ Fw2) · Qz · Qzk0−k , both having weight
≤ (2k − 1) + 1 + 2(k0 − k) − 1 = 2k0 − 1 in view of Lemma 3.1. Note that by (3.5),
there is no term with Fw.

Our strategy to estimate the weights of general terms is to compare them with these
extreme cases. More precisely, we shall consider simple moves to pass from one term
to another. Our first move consists of raising the z-order s in Fzswr by an integer t . In
order to keep the total degree constant, we decrease by the same integer t the order l in
some factor Qzl . Since the increase contributes with +t to the total weight, whereas
the decrease with −2t in view of our rules (3.8)–(3.9), we can only decrease the total
weight that way. Our second move raises the w-order in Fzswr by r ′ and adds r ′ new
factors Qz . Again, to keep the total degree constant, we have to lower by r ′ the order
of Qzl . Then the total weight increases by r ′ and decreases by 2r ′, hence decreases in
total. Using these two moves we shall obtain any term with all maps in (3.13) being
Fz = id except one, being

Fzswr · Qzl · Qz . . . · Qz (3.14)

with appropriate integers and appropriate number of the first order factors Qz . Our
next move exchanges derivative orders between the Q-factors here. That is, keeping
the total degree constant, we can decrease the order of a factor in (3.14) by an inte-
ger and simultaneously increase the order of another Q-factor by the same integer.
Clearly this move does not change the weight and allows us to obtain any other term
still having all but one maps in (3.13) equal Fz = id.

Our two last moves will exchange indices between different parentheses in (3.13).
The first one decreases z-order of Fzswr for the first map by s′ and increases it by the
same number for another map. Here both degree and weight do not change. Finally,
we can trade the w-order of Fzswr the same way along with moving the appropri-
ate number of Q-factors to the other parenthesis. For instance, we can pass from
(Fzw2 · Qz2 · Qz5, Fz3) to (Fzw · Qz5, Fz3w · Qz2), where the Q-factor Qz2 goes to the
second map together with the extra derivative in w, whereas the w-derivative of the
first map decreases. Again, also here both degree and weight stay clearly the same.
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Summarizing, we see that, starting from the above extreme terms and using the
moves as described, we can obtain any other term. Hence every term has weight
≤ 2k0 − 1 as desired. Furthermore, it follows from the proof that any term in (3.10)
with all sets of maps Aν1,...,νa and B

ν
j
1 ,...,ν

j

a j
being empty, appears only once. 
�

3.3 Relations between jets of defining functions and of the Segre varieties

We return to the situation, where M ⊂ C
n+1 is a real-analytic hypersurface with a

reference point that we continue to assume to be 0. As before let ρ(Z , Z̄) be any defin-
ing function of M that we regard as a convergent power series in (Z , Z̄). We make a
choice of holomorphic coordinates Z = (z, w) ∈ C

n ×C such that ρw(0) �= 0. We can
then apply the implicit function theorem to the complexified equation ρ(z, w, ζ̄ ) = 0
for (z, w, ζ ) ∈ C

n × C × C
n+1 and solve it locally for w in the form w = Q(z, ζ̄ ),

where Q is holomorphic in (z, ζ̄ ) ∈ C
n × C

n+1 near 0. The function Q can be used
to parametrize the Segre varieties: Sζ = {(z, Q(z, ζ̄ )) : z ∈ C

n}.
Our goal here will be to establish an explicit relation between the partial derivatives

of ρ at (0, ζ̄ ) ∈ C
n+1 × C

n+1 and of Q at (0, ζ̄ ) ∈ C
n × C

n+1 for ζ varying in S0,
the Segre variety of 0 associated to M . We keep the notation Qzk for the kth full
derivative of Q in z and use the notation ρzswl analogous to Gzkwl in (3.7). That is,
each ρzswl (0, ζ̄ ) is regarded as an s-linear function C

n × · · · × C
n → C depending

on the parameter ζ ∈ S0.
It turns out that the desired relation has a natural tree structure, for which we now

introduce the needed terminology. Recall that a (directed or rooted) tree is a connected
directed graph such that each vertex has precisely one incoming arrow except the root
(one designated vertex) that has none. We consider here a tree T together with a mark-
ing s by nonnegative integers, i.e. a function s : V (T ) → N (with the convention
N = {0, 1, . . .}), where V (T ) denotes the set of all vertices of the tree T . The marking
will correspond to the differentiation order in z. We do not distinguish between iso-
morphic marked trees, i.e. trees for which there exist bijections between their vertices
respecting the arrows and the markings. Together with a marking, we use the integer
function l(a) ∈ N, a ∈ V (T ), with l(a) being the number of all outgoing arrows from
a. Clearly l(a) depends only on the tree structure (and not on the marking).

Proposition 3.3 The derivatives of Q and ρ are related by the formula

Qzk (0, ζ̄ ) =
∑

T,s

∏

a∈V (T )

ρzs(a)wl(a) (0, ζ̄ )

−ρw(0, ζ̄ )
, ζ ∈ S0, (3.15)

where the product of the multilinear functions is understood in the sense of (3.1) and
the summation is taken over the set of all possible finite trees T and their markings s
satisfying

2s(a) + l(a) ≥ 2 ∀a ∈ V (T ),
∑

a∈V (T )

s(a) = k. (3.16)

Note that the first condition in (3.16) eliminates precisely the pairs (s(a), l(a))

equal to (0, 0) or (0, 1). In particular, the derivative ρw in (3.15) appears only in the
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denominator. Note also that both conditions (3.16) together force the sum in (3.15)
to be finite. Indeed, summing the inequality in (3.16) for all vertices a ∈ V (T ) and
using the second condition yields

2k +
∑

a

l(a) ≥ 2|T |, (3.17)

where |T | stands for the total number of vertices. Since every vertex has precisely one
incoming arrow except the root, we have

∑
a l(a) = |T | − 1 by definition of l(a).

Substituting into (3.17) we obtain an estimate on the number of vertices:

|T | ≤ 2k − 1. (3.18)

Since the number of trees with given number of vertices is finite and also the number
of markings is finite in view of the second condition in (3.16), we conclude that the
sum in (3.15) is finite as claimed.

Remark 3.4 In the sum on the right-hand side of (3.15), there is precisely one term

containing the derivative ρzk , namely
ρzk (0,ζ̄ )

−ρw(0,ζ̄ )
, corresponding to the tree with single

vertex a0 and the marking s(a0) = k. Any other derivative ρzswl that appears in (3.15),
satisfies s + l ≤ k and s < k. Indeed, any derivative ρzswl appears at a vertex a0 ∈ T
with l outgoing arrows. Each outgoing arrow leads, after following a number or arrows,
to at least one vertex with no further outgoing arrows (hence corresponding to a deriv-
ative ρzt with t ≥ 1). Thus we have the vertex a0 with s(a0) = s and l other vertices
a1, . . . , al with s(a j ) ≥ 1 for all j = 1, . . . , l. Therefore

∑
a∈V (T ) s(a) ≥ s + l and

hence s + l ≤ k in view of (3.16). For s = k, it must follow that l = 0 and s(a) = 0
for any a �= a0 ∈ V (T ). The inequality in (3.16) implies l(a) ≥ 2 for any a �= a0,
hence any other vertex has at least two outgoing arrows. But we have seen that each
arrow leads to a vertex a with s(a) ≥ 1. Hence this is only possible for the tree with
the single vertex a0, proving the claim.

Proof of Proposition 3.3 We shall obtain the formula (3.15) by differentiating the
identity

ρ(z, Q(z, ζ̄ ), ζ̄ ) = 0 (3.19)

at z = 0 and using the induction on k. Recall that Q(0, ζ̄ ) = 0 for ζ ∈ S0.
For k = 1, we have

ρz(0, ζ̄ ) + ρw(0, ζ̄ ) Qz(0, ζ̄ ) = 0, (3.20)

implying the desired formula in this case, where the only possible tree T has one
vertex a0 and the only possible marking is s(a0) = 1.

We now assume the formula for all k < k0 and differentiate (3.19) k0 times in z at
z = 0 and ζ ∈ S0. All derivatives will be understood evaluated at (0, ζ̄ ) as in (3.15)
for the rest of the proof and for brevity we shall omit the argument (0, ζ̄ ). With this
convention in mind, we obtain:

∑
ρzr wh · Qzk1 · · · · · Qzkh = 0, (3.21)
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where the summation is taken over all indices r, h ∈ N, and for each h, all unordered
sets of h indices k1, . . . , kh ∈ N, satisfying r + k1 + · · · + kh = k0. Note that we
continue using the dot for the multiplication defined in (3.1). The sum (3.21) contains
precisely one term with Qzk0 , namely ρw · Qzk0 (which is also the only term with ρw),
whereas all other derivatives of Q have lower order. Hence we can solve (3.21) for
Qzk0 in the form

Qzk0 =
∑ ρzr wh

−ρw

· Qzk1 · · · · · Qzkh , (3.22)

where now we have the additional restriction k j < k0 in the sum and no factor ρw

appears in the numerator on the right. Hence we can use our induction hypothesis and
replace each derivative Q

zk j by the right-hand side of (3.15) corresponding to k = k j :

Qzk0 =
∑ ρzr wh

−ρw

∏

(a1,...,ah)∈V (T1)×···×V (Th)

ρzs1(a1)wl1(a1)

−ρw

· · · · · ρzsh (ah )wlh (ah )

−ρw

,

(3.23)
where the summation is taken over all choices of h trees T1, . . . , Th with markings
s1, . . . , sh , satisfying

2s j (a j ) + l j (a j ) ≥ 2 ∀a j ∈ V (Tj ),
∑

j∈V (Tj )

s j (a j ) = k j . (3.24)

We now claim that each term in the sum (3.23) appears precisely once on the right-
hand side of (3.15) with k replaced by k0. To show this, we construct for each term
a new tree T with marking s as follows. The vertex set V (T ) is the disjoint union of
V (T1), . . . , V (Th), and one more vertex a0 that will become the root of T . We keep
all the arrows within each Tj and add h arrows from a0 to the root of each tree Tj .
Finally we keep the marking for each tree Tj and define s(a0) := r for the root. It is
easy to see that T is again a directed tree and s is a marking satisfying (3.16) with
k = k0. The pair (T, s) constructed this way, yields precisely the same term in the sum
(3.15) as the one we started with. Vice versa, given a term in (3.15) with T and s, we
can remove the root a0 ∈ V (T ) with its outgoing arrows and obtain a finite collection
of marked trees T1, . . . , Th . Setting r := s(a0), we obtain precisely the same term
in (3.23). Thus we have a one-to-one correspondence between the terms and hence
(3.23) implies the desired formula (3.15), proving it for k = k0. 
�

4 Applications to embeddings of hypersurfaces

4.1 Linear dependence of partial derivatives

We now return to our discussion of holomorphic embeddings. Let M ′ ⊂ C
n+m+1 be a

real hyperquadric with a reference point that we shall assume to be the origin 0 ∈ M ′
and denote by S′

ζ the associated Segre variety of ζ ∈ C
n+m+1 (see Sect. 3.3). Then it

follows directly from the definition that all varieties S′
ζ are hyperplanes. This simple

observation will be important in the sequel.
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We next consider a real-analytic submanifold M ⊂ M ′ through 0, which is generic
in a suitable complex submanifold V ⊂ C

n+m+1, i.e. M ⊂ V and Tx M+iTx M = Tx V
whenever x ∈ M . The manifold V is also called the intrinsic complexification of M .
Denote by d the real codimension of M in V (which coincides with the CR-codi-
mension of M) and set n := dimC V − d (which coincides with the CR-dimension
of M). Then the Segre varieties Sζ associated to M are n-dimensional complex sub-
manifolds of V defined for ζ ∈ V near 0. We choose complex-linear coordinates
(z, w) ∈ C

n × C
m+1 vanishing at 0 such that Sζ is given by w = Q(z, ζ̄ ), where

Q is a holomorphic function defined in a neighborhood of 0 in C
n × V , where V

denotes the conjugate submanifold. There will be a priori no relation between these
coordinates and those, where M ′ has the form (2.1). However, we shall only consider
linear changes of coordinates for M ′, and hence the property for the Segre varieties
S′
ζ to be hyperplanes remains unchanged. In the sequel, by the rank of a set of vectors

we shall mean the dimension of their span.

Lemma 4.1 Let M ′ ⊂ C
n+m+1 be a real hyperquadric through 0 (given by (2.1) in

some linear coordinates) such that

e := (0, . . . , 0, 1) /∈ T c
0 M ′. (4.1)

Let M ⊂ M ′ ∩ V be a real-analytic submanifold through 0 as above, whose Segre
varieties Sζ are given by w = Q(z, ζ̄ ), for (z, w) ∈ C

n × C
m+1 and ζ in the intrinsic

complexification V of M. Then for any m + 1 multiindices α1, . . . , αm+1 ∈ N
n with

|α j | ≥ 2, the corresponding partial derivatives Qzα j (0, ζ̄ ), j = 1, . . . , m + 1, are
linearly dependent in C

m+1 for each ζ ∈ S0. Furthermore, for any given irreducible
complex-analytic subvariety S ⊂ S0 passing through 0, set

r := max
ζ∈S

rank {Qzα j (0, ζ̄ ) : 1 ≤ j ≤ m + 1} ≤ m. (4.2)

Then the first m coordinates of C
m+1 can be reordered such that, if π : C

m+1 →
C

r × {0} ⊂ C
r × C

m+1−r stands for the projection to the first r coordinates, then

max
ζ∈S

rank {π(Qzα j (0, ζ̄ )) : 1 ≤ j ≤ m + 1} = r. (4.3)

Proof Recall that M ⊂ M ′ implies Sζ ⊂ S′
ζ for the corresponding Segre varieties

(see, e.g. [17]). Consider the parametrization maps z �→ v(z, ζ̄ ) := (z, Q(z, ζ̄ )) of
the Segre varieties Sζ associated to M . Since for ζ ∈ S0 ⊂ S′

0, we have Sζ ⊂ S′
ζ and

the latter variety is a hyperplane, the derivatives

vz1(0, ζ̄ ), . . . , vzn (0, ζ̄ ), vzα1 (0, ζ̄ ), . . . , vzαm+1 (0, ζ̄ ) ∈ C
n+m+1

are also contained in a hyperplane � in C
n+m+1 for each ζ ∈ S0 (with � depending

on ζ ). Since |α j | ≥ 2, we have

vzα j (0, ζ̄ ) = (0, Qzα j (0, ζ̄ )) ∈ C
n × C

m+1, 1 ≤ j ≤ m + 1, (4.4)
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and therefore these vectors are contained in �∩({0}×C
m+1). Since � = S′

0 = T c
0 M ′

for ζ = 0, we have e /∈ � for ζ near 0 in view of (4.1). Restricting to a possibly smaller
neighborhood of 0, we may assume that e /∈ � holds for all ζ . Here we use the irre-
ducibility assumption on S and its consequence that the ranks in (4.2) and (4.3) do not
change after restricting ζ to any smaller neighborhood of 0. Hence � ∩ ({0} × C

m+1)

is a proper hyperplane in {0} × C
m+1. Thus the vectors (4.4) are linearly dependent.

Furthermore, since e is not contained in the span of the vectors (4.4), the dimension
of this span remains unchanged after projecting to the first m coordinates of the space
C

m+1. Then we can reorder the coordinates of C
m × {0} ⊂ C

m+1 and consider the
standard projection π : C

m+1 → C
r × {0} such that (4.3) holds. 
�

4.2 Polynomial relations for the partial derivatives of Q

We now return to the original situation, where M is a real-analytic hypersurface in
C

n+1 with reference point p ∈ M . As before we choose local holomorphic coor-
dinates Z = (z, w) ∈ C

n × C vanishing at p and a defining function ρ(Z , Z̄) for
M such that ρw(0, 0) �= 0. As in Sect. 3.3 we apply the implicit function theorem
to the complexified equation ρ(z, w, ζ̄ ) = 0 and solve it locally for w in the form
w = Q(z, ζ̄ ), where Q is a holomorphic function in (z, ζ̄ ) ∈ C

n × C
n+1 near 0 that

can be used to parametrize the Segre varieties: Sζ = {(z, Q(z, ζ̄ )) : z ∈ C
n}. We

continue to use the weights of the partial derivatives of Q given by

wt Qzα := 2|α| − 1 (4.5)

as in (3.8).

Proposition 4.2 Let M ⊂ C
n+1 be a real-analytic hypersurface through 0, which is

transversally holomorphically embeddable into a real hyperquadric in C
n+m+1. Then

for every irreducible complex-analytic subvariety S ⊂ S0 passing through 0 and every
set of m + 1 multiindices α j , |α j | ≥ 2, j = 1, . . . , m + 1, there exists an integer k
with K := { j : |α j | = k} �= ∅ such that the partial derivatives of Q satisfy a relation
of the form

∑

j∈K

Pj (Qzβ (0, ζ̄ )) Qzα j (0, ζ̄ ) = R(Qzβ (0, ζ̄ )), ζ ∈ S, (4.6)

where Pj (Qzβ (0, ζ̄ )) and R(Qzβ (0, ζ̄ )) are some polynomials in the partial deriva-
tives Qzβ of lower order (i.e. |β| < k), having weights

wt Pj ≤ (2k − 2)(l − 1), wt R ≤ (2k − 2)l + 1, (4.7)

and not all Pj (Qzβ (0, ζ̄ )) identically vanish in ζ ∈ S, where l ≥ 1 is the number of
all j ’s with |α j | ≤ k.

Proof Denote by M ′ a hyperquadric in C
n+m+1, where M can be embedded, and let

H be any embedding. Without loss generality, M ′ passes through 0 such that (4.1)
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holds, where we use the transversality of the embedding. We write H = (F, G) as in
(3.4). By a linear change of coordinates in C

n+m+1, we can achieve in addition the
normalization assumptions (3.5) as well as

Gw(0) = (0, . . . , 0, 1). (4.8)

Then we are in the setting of Proposition 3.2, where the complex hypersurface S is
any Segre variety Sζ of M , given by w = Q(z, ζ̄ ), ζ ∈ S0, and S′ = H(S) is its
image in C

n+m+1 given by w′ = Q′(z′, ζ̄ ), where Q′ is an appropriate holomorphic
C

m+1-valued function in z′ with parameter ζ . The relation between the full higher
order derivatives of Q and Q′ (with respect to z and z′ respectively) at 0 is given
by (3.10). Since each term’s weight on the right-hand side of (3.10) does not exceed
2k − 1, only one term can appear with Qzk (0, ζ ), namely Gw(0)Qzk (0, ζ ). Hence we
have

Q′
z′α (0, ζ̄ ) = Gw(0)Qzα (0, ζ̄ ) + Pα(Qzβ (0, ζ̄ )), (4.9)

where Pα(Qzβ (0, ζ̄ )) is a polynomial in the lower order derivatives Qzβ (0, ζ̄ ), |β| <

|α|, with wt Pα ≤ wt Qzα = 2|α| − 1. Moreover, since the derivative Gw(0) satisfies
(4.8) and any other derivative Gzswl (0) is of positive weight, we can rewrite (4.9) with
improved weight estimates as

Q′
z′α (0, ζ̄ )= (

0, Qzα (0, ζ̄ )
) + (

Rα(Qzβ (0, ζ̄ )), T α(Qzβ (0, ζ̄ ))
) ∈ C

m × C (4.10)

with Rα and T α being polynomials of weights

wt Rα ≤ 2|α| − 2, wt T α ≤ 2|α| − 1. (4.11)

We next apply Lemma 4.1 to the partial derivatives of Q′ in z′ corresponding to
the given multiindices α1, . . . , αm+1. It follows that there exists an integer r ≤ m and
one can reorder the first m coordinates of C

m+1 such that, if π : C
m+1 → C

r × {0} is
the projection to the first r coordinates, then

max
ζ∈S

rank {Q′
z′α j (0, ζ̄ ) : 1 ≤ j ≤ m + 1}

= max
ζ∈S

rank {π(Q′
z′α j (0, ζ̄ )) : 1 ≤ j ≤ m + 1} = r. (4.12)

Without loss of generality, we may assume that the multiindices α j are ordered such
that |α1| ≤ · · · ≤ |αm+1|. We claim that an integer 1 ≤ j0 ≤ m + 1 can be chosen
such that

max
ζ∈S

rank {π(Q′
z′α j (0, ζ̄ )) : 1 ≤ j < j0}

= max
ζ∈S

rank {π(Q′
z′α j (0, ζ̄ )) : 1 ≤ j ≤ j0} = j0 − 1. (4.13)

Indeed, denote by r( j0) the left-hand side of (4.13). Then r( j0) is an increasing integer
function of j0 with r(1) = 0 and r(m + 2) ≤ r ≤ m. Then there must exist j0 with
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r( j0) = r( j0 + 1) and it suffices to take the minimum j0 with this property to prove
the claim.

We now consider the j0 × j0 matrix (Q′h
z′α j (0, ζ̄ )) with 1 ≤ j ≤ j0 and either

1 ≤ h ≤ j0 − 1 or h = m + 1. Then (4.13) implies that, after a suitable permutation
of the coordinates in C

r , the determinant of this matrix identically vanishes, whereas
the leading ( j0 − 1) × ( j0 − 1) minor corresponding to 1 ≤ j, h ≤ j0 − 1, does not
identically vanish. In view of (4.10), the first condition yields an identity of the form
(4.6) and the second—the nonvanishing of the coefficient Pj0(Qzβ (0, ζ̄ )) in front of
Qz

α j0 (0, ζ ). Finally, the desired weight estimates follow from (4.11). 
�

5 Polynomial relations for the derivatives of the defining functions

We prove here a stronger version of Theorem 2.2, where we replace the Segre variety
Sp of the reference point p with any irreducible complex-analytic subvariety of Sp.
As before in Sect. 2 we write ρ(Z , Z̄) for a real-analytic defining function of a hyper-
surface M ⊂ C

n+1 satisfying ρw(p, p̄) �= 0 for some fixed holomorphic coordinates
Z = (z, w) ∈ C

n × C and keep the weights wt ρzαws := 2|α| + s − 1 as in (2.2).
Recall that the derivative ρw is the only one with weight 0 and we count this derivative
separately, denoting by degρw

P the degree of the polynomial P in the variable ρw.
We now have the following stronger version of Theorem 2.2:

Theorem 5.1 Let M ⊂ C
n+1 be a real-analytic hypersurface through p, which is

transversally holomorphically embeddable into a hyperquadric in C
n+m+1. Then for

every irreducible complex-analytic subvariety S ⊂ Sp passing through p and every
set of m + 1 multiindices α j , |α j | ≥ 2, j = 1, . . . , m + 1, there exists an integer k
with K := { j : |α j | = k} �= ∅, such that the partial derivatives of ρ satisfy a relation
of the form

∑

j∈K

Pj (ρzβws (p, ζ̄ )) ρzα j (p, ζ̄ ) = R(ρzβws (p, ζ̄ )), ζ ∈ S, (5.1)

where Pj (ρzβws (p, ζ̄ )) and R(ρzβws (p, ζ̄ )) are some polynomials in the partial deriv-
atives ρzβws (p, ζ̄ ) with |β| + s ≤ k, |β| < k, and not all Pj (ρzβws (p, ζ̄ )) identically
vanish in ζ ∈ S. Moreover, Pj and R can be chosen satisfying in addition the following
weight and degree estimates:

wt Pj ≤ (2k − 2)(l − 1), wt R ≤ (2k − 2)l + 1,

degρw
Pj ≤ (2k − 2)l, degρw

R ≤ (2k − 2)l + 1,
(5.2)

where l is the number of all j with |α j | ≤ k.

Theorem 2.2 corresponds to the special case of Theorem 5.1 with S = Sp. Note
that the general case of S ⊂ Sp does not follow from that of S = Sp by restriction,
because all Pj (ρzβws (p, ζ̄ )) obtained from Theorem 2.2 may identically vanish on
the given subvariety S even if they don’t on Sp. The refined version in the form of
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Obstructions to embeddability 713

Theorem 5.1 (in fact its proof) will be used in Sect. 7 to obtain lower order obstructions
to embeddability than those provided by Theorem 2.2.

Proof The proof follows from Propositions 4.2 and 3.3. Indeed, by Proposition 4.2,
we have the relation (4.6). Furthermore, by Proposition 3.3, we can express each
derivative of Q by the appropriate expression in the derivatives of ρ according to the
formula (3.15) and substitute them into (4.6). Multiplying by a suitable power of ρw,
we obtain a polynomial relation (5.1). In view of Remark 3.4, the expression substi-
tuting for each derivative Qzα , contains the derivative ρzα with factor 1

−ρw
and besides

only the derivatives ρzβws with |β| + s ≤ |α| ≤ k and |β| < |α| ≤ k. Hence the
nonvanishing property for the polynomial coefficient in (4.6) in front of some Qzα j

implies the nonvanishing of the corresponding coefficient in (5.1) in front of ρzα j .
It remains to show the estimates (5.2). According to our construction, each deriva-

tive Qzα is replaced by a sum of terms, each being a product of the derivatives ρzβwl

corresponding to a marked tree T in the formula (3.15), i.e. |β| = s(a) and l = l(a)

for a ∈ V (T ). Summing the weights (2.2) for all vertices of T , we obtain the total
weight equal to

2
∑

s(a) +
∑

l(a) − |T |, (5.3)

where |T | stands for the total number of vertices as before. We have
∑

s(a) = |α| in
view of (3.16). Recall that l(a) is the number of outgoing arrows from the vertex a.
Each vertex has precisely one incoming arrow except the root. Hence

∑
l(a) = |T |−1.

Substituting into (5.3) we obtain that the total weight of a term replacing Qzα is 2|α|−1,
which is precisely wt Qzα . Hence our substitution will not change the weights, proving
the estimates in the first line of (5.2).

To estimate the degree in ρw, observe that a term substituting for each derivative
Qzα in (4.6) consists of at most 2|α| − 1 = wt Qzα factors ρzβwl in view of the esti-
mate (3.18) for the number of all vertices. Thus the power of ρw in the denominator
of a term does not exceed the total weight. The maximal weight of a term in (4.6) is
(2k − 2)l + 1, hence the power of ρw needed to eliminate the denominators is at most
(2k − 2)l + 1. This proves the estimates in the second line of (5.2). 
�

6 Invariants attached to real hypersurfaces

Inspired by Proposition 4.2, we introduce here series of invariants attached to a germ
(M, p) of a real-analytic hypersurface in C

n+1 that provide bounds on possible dimen-
sion of a hyperquadric, where (M, p) can be (transversally) embedded. As before we
choose local holomorphic coordinates (z, w) ∈ C

n × C near p, vanishing at p, such
that M is given by w = Q(z, z̄, w̄) near p with Q being a uniquely determined holo-
morphic function in its arguments (z, χ, τ ) ∈ C

n ×C
n ×C, defined in a neighborhood

of 0. We write ζ = (χ, τ ) ∈ C
n × C.

In our first sequence of invariants rk(M, p) we look for possible relations of the
form (4.6), ignoring the estimates (4.7). More precisely, for every integer k ≥ 2,
define rk(M, p) to be the maximal number m of the partial derivatives Qzα1 (0, ζ ), . . . ,
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Qzαm (0, ζ ) of order k satisfying no relation of the form

m∑

j=1

Pj (Qzβ (0, ζ )) Qzα j (0, ζ ) = R(Qzβ (0, ζ )), ζ ∈ S0, (6.1)

where Pj (Qzβ (0, ζ )) and R(Qzβ (0, ζ )) are polynomials in the lower order partial
derivatives Qzβ (0, ζ ), |β| < k, and

(P1(Qzβ (0, ζ )), . . . , Pm(Qzβ (0, ζ ))) �≡ 0.

It follows from the transformation rule for the derivatives Qzα (0, ζ ) (cf. Proposi-
tion 3.2) that the integers rk(M, p) so defined, depend only on M and p but not on
the choice of coordinates (z, w) and hence are biholomorphic invariants of (M, p).
Indeed, the derivatives Qz′α (0, ζ ) with |α| = k in a new coordinate system (z′, w′)
are expressed as linear combinations of Qzβ (0, ζ ) and 1 with coefficients in the field
R of all rational functions in the lower order derivatives Qzγ (0, ζ ), |γ | < k. On the
other hand, rk(M, p) can be interpreted as the dimension of the span of all functions
Qzα (0, ζ ), |α| = k, together with the function 1, over the field R.

In our second series, we refine the invariants rk(M, p) by adding the weight esti-
mates (4.7) to consideration. We fix some coordinates (z, w) as before and define the
integers r̂k(M, p), k ≥ 2, inductively as follows. Assuming that r̂k(M, p) are defined
for k < k0, define r̂k0(M, p) to be the maximal number m of the partial derivatives
Qzα1 (0, ζ ), . . . , Qzαm (0, ζ ) of order k0 satisfying no relation of the form (6.1) as
above with the additional restriction that

wt Pj ≤ (2k0 − 2)

⎛

⎝
∑

k<k0

r̂k(M, p) + m − 1

⎞

⎠ ,

wt Pj ≤ (2k0 − 2)

⎛

⎝
∑

k<k0

r̂k(M, p) + m

⎞

⎠ + 1.

(6.2)

Analysing the transformation rule given by Proposition 3.2 in case of mappings
between equal dimension spaces, we conclude that the integers r̂k(M, p) remain
invariant under coordinate changes given by H = (F, G) satisfying (3.5). On the
other hand, r̂k(M, p) may potentially change under the linear coordinate transforma-
tions, where the corresponding change of the derivatives Qzα (0, ζ ) is rational rather
than polynomial. Thus, in order to obtain an invariant, we define r̃k(M, p) to be the
minimum of r̂k(M, p) taken over all possible linear changes of coordinates.

As an immediate consequence of Proposition 4.2, we now obtain the following
relations between the invariants just defined and embeddings into hyperquadrics:

Corollary 6.1 Let (M, p) be a germ of real-analytic hypersurface in C
n+1 that is

transversally holomorphically embeddable into a real hyperquadric in C
n+m+1. Then
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Obstructions to embeddability 715

∑

k

rk(M, p) ≤
∑

k

r̃k(M, p) ≤ m.

In particular, if
∑

k rk(M, p) = ∞ or
∑

k r̃k(M, p) = ∞, then (M, p) is not trans-
versally holomorphically embeddable into any real hyperquadric.

Remark 6.2 Similarly to rk(M, p) and r̃k(M, p) we can also define further invariants
using the identities (2.3) in Theorem 2.2 instead of (6.1) and the weight estimates
(2.4) instead of (4.7). However, it follows from the proof of Theorem 2.2 (in fact
from Proposition 3.3) that so defined invariants do not exceed rk(M, p) and r̃k(M, p)

respectively and hence provide a rougher estimate for the embeddability dimension.

7 Distinguished submanifolds of the Segre varieties and lower order
obstructions

The theory of Chern and Moser [5] reveals some special nature of real hypersurfaces
of low dimension. For instance, in case n ≥ 2, the obstruction for a real hypersurface
in C

n+1 to be a hyperquadric is of order 4, whereas for n = 1, it is of order 6. This
phenomenon turns out to arise in a more elaborated form in our case, where we study
obstructions to embeddability into higher dimensional hyperquadrics.

In order to describe this phenomenon we shall introduce some distinguished fam-
ilies of submanifolds of the Segre varieties. Throughout this section M will be a
real-analytic Levi-nondegenerate hypersurface in C

n+1. Recall that the family of the
Segre varieties SZ , Z ∈ C

n+1, associated to a generic real-analytic CR-submanifold
M ⊂ C

n+1, is parametrized by the points of the ambient space. In case M is a Levi-
nondegenerate hypersurface (see, e.g. [1] for this and other basic terminology), each
SZ is a complex hypersurface and the map Sp � Z �→ Tp SZ into the corresponding
Grassmannian is of maximal rank by an observation due to Webster [17]. We are going
to refine this family as follows. Given any linear subspace V ⊂ Tp Q p = T c

p M , define

Sp,V := {Z ∈ Sp : Tp SZ ⊃ V } ⊂ Sp. (7.1)

It is easy to see that the sets Sp,V are local invariants of M , more precisely, a neigh-
borhood of p in Sp,V is completely determined by a neighborhood of p in M and is
sent to Sp,H∗V (as germ at p) by any local biholomorphism H of C

n+1 preserving the
germ (M, p). Furthermore, since the map Z �→ Tp SZ is of the maximal rank n at p,
it follows that each Sp,V is a complex submanifold of C

n+1 through p (in fact, the
tangent space Tp Sp,V coincides with the orthogonal complement of V with respect to
the Levi form of M).

We keep the notation from Sects. 3.2–3.3. In addition to (3.5) we assume

Gz(0) = 0. (7.2)

The reference point p ∈ M will be assumed to be 0. We also consider the standard
basis e1, . . . , en in C

n given by e j = (0, 1, 0) ∈ C
j−1 × C × C

n− j . For a subset
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I ⊂ {1, . . . , n}, we set

V 0
I := span {e j : j ∈ I }, VI := (V 0

I × C) ∩ T c
0 M. (7.3)

For every such I , consider the distinguished submanifold S0,VI ⊂ S0. We also use the
notation

supp α := { j : α j �= 0} ⊂ {1, . . . , n}

for a multiindex α = (α1, . . . , αn) ∈ N
n .

Lemma 7.1 Let I ⊂ {1, . . . , n} be a proper subset and α be a multiindex with |α| = 2
and supp α ⊂ I . Then

Q′
zα (0, ζ̄ ) = Gw

(
Qzα (0, ζ̄ ) + P1(Qzβ (0, ζ̄ ))

) + P0, ζ ∈ S0,VI , (7.4)

where P1(Qzβ (0, ζ̄ ) is a polynomial of degree at most 1 in the derivatives Qzβ (0, ζ̄ ),
|β| = 1, and P0 is a constant.

Proof We apply the transformation formula (3.10) for the 2nd full derivatives of
Q(z, ζ̄ ) with respect to z that we denote by Qz2(z, ζ̄ ). We have Q′

zα (0, ζ̄ ) = Qz2(z, ζ̄ )

(v1, v2) for suitable vectors v1, v2 (from the standard basis e1, . . . , en). Hence, in order
to obtain Q′

zα (0, ζ̄ ), we evaluate (3.10) with k = 2 at (v1, v2). The key observation is
that supp α ⊂ I implies Qz(0, ζ̄ )(v j ) being constant in ζ̄ for j = 1, 2, and ζ ∈ S0,VI .
Hence, on the right-hand side of (3.10), the only other factors involving Qz are of the
form (Qz ◦ B0), (Qz ◦ B1)(v

j ), (Qz ◦ B2)(v
1, v2) having degrees 0, 1, 2 and weights

1, 2, 3 respectively, whereas Qz(0, ζ̄ )(v j ) has both degree and weight 1. According
to Proposition 3.2, the degree of each term is 2 and the weight does not exceed 3.
Hence all terms contain only the first order derivatives Qzβ (0, ζ̄ ), |β| = 1, except
Gw Qzα (0, ζ̄ ) (recall that wt Qzα = 3), the latter giving the first term on the right-
hand side of (7.4). Since the total degree must be 2 and total weight ≤ 3, any other
term with Gw has either at most one factor Qz ◦ B1 or at most one factor Qz ◦ B2. In
the first case, the other factor has to be Qz which is constant, hence the corresponding
product is a polynomial in Qzβ (0, ζ̄ ), |β| = 1, of degree at most 1, contributing to the
polynomial P1 in (7.4). In the second case, wt Qz ◦ B2 = 1 + 2 = 3, hence no other
factor can appear and the result is again a polynomial in Qzβ (0, ζ̄ ), |β| = 1, of degree
at most 1, contributing to P1.

Finally, we investigate the terms containing the other derivatives Gzkwl (i.e. with
(k, l) �= (0, 1)). Some of them contain only constant factors with Qz and hence con-
tribute to P0 in (7.4). Any other term which is not constant, must have a factor Qz ◦ Bν

and thus is of weight at least 1. Therefore we can only have Gzkwl or Gzkwl ◦ Aµ with
total weight ≤ 2. Since (k, l) �= (0, 1) and in view of (7.2), we can only have Gw2 ,
Gw3 , Gzw or Gzw◦ A0. Since the total degree has to be 2, each term has a factor Qz ◦Bν

with ν ≥ 1, having weight ≥ 2. This leaves a weight at most 1 for the factor involving
Gzkwl , which can only be Gw2 . But Gw2 requires at least two factors involving Qz ,
each having weight ≥ 1. The latter makes it impossible to have the total weight not
exceeding 3 and therefore no terms of that kind may occur. 
�
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Using Lemma 7.1 we obtain low degree relations between second order derivatives:

Corollary 7.2 Let M ⊂ C
n+1 be a real-analytic hypersurface through 0 given by

w = Q(z, Z̄), Z = (z, w) ∈ C
n ×C, that is transversally holomorphically embedda-

ble into a real hyperquadric in C
n+m+1. Fix a proper subset I ⊂ {1, . . . , n}. Then for

every set of m + 1 multiindices α j , j = 1, . . . , m + 1, with |α j | = 2 and supp α j ⊂ I ,
there is a relation of the form

∑

j

λ j Qzα j (0, ζ̄ ) = R1(Qzβ (0, ζ̄ )), ζ ∈ S0,VI , (7.5)

where (λ1, . . . , λm+1) �= 0 and R1(Qzβ (0, ζ̄ )) is a polynomial of degree at most 1 in
the first order partial derivatives Qzβ (0, ζ̄ ).

Proof The proof is analogous to that of Proposition 4.2, where we use Lemma 7.1
instead of Proposition 3.2. The details are left to the reader. 
�

Using the transformation law between the derivatives of Q and of ρ given by Prop-
osition 3.3, we also obtain a low degree relation between the derivatives of ρ:

Corollary 7.3 Let M ⊂ C
n+1 be a real-analytic hypersurface through 0 given by

ρ(Z , Z̄) = 0, ρw(0, 0) �= 0, that is transversally holomorphically embeddable into a
real hyperquadric in C

n+m+1. Fix a proper subset I ⊂ {1, . . . , n}. Then for any set
of m + 1 multiindices α j , j = 1, . . . , m + 1, with |α j | = 2 and supp α j ⊂ I , there is
a relation of the form

∑

j

λ j
ρzα j (0, ζ̄ )

ρw(0, ζ̄ )
= R1

(
ρzβ (0, ζ̄ )

ρw(0, ζ̄ )
,
ρzβw(0, ζ̄ )

ρw(0, ζ̄ )
,
ρw2(0, ζ̄ )

ρw(0, ζ̄ )

)
, ζ ∈ S0,VI , (7.6)

where (λ1, . . . , λm+1) �= 0 and R1 is a polynomial of degree at most 1 in its compo-
nents involving |β| ≤ 1.

Proof As mentioned before, we use the transformation law between the derivatives
of Q and ρ given by Proposition 3.3. The relation between Qzβ (0, ζ̄ ) and ρzβ (0, ζ̄ )

follows, for instance, from (3.20). To obtain the formula for Qzα j (0, ζ̄ ), we use (3.15)
for k = 2:

Qz2(0, ζ̄ ) = ρz2(0, ζ̄ )

−ρw(0, ζ̄ )
+ ρzw(0, ζ̄ )

−ρw(0, ζ̄ )

ρz(0, ζ̄ )

−ρw(0, ζ̄ )
+ ρw2(0, ζ̄ )

−ρw(0, ζ̄ )

(
ρz(0, ζ̄ )

−ρw(0, ζ̄ )

)2

.

(7.7)

The partial derivative Qzα j (0, ζ̄ ) is now given by the evaluation of the right-hand side
of (7.7) at the suitable pair of vectors (v1, v2). By the same key observation as in the

proof of Lemma 7.1, we conclude that Qz(0, ζ̄ )(v j ) = 0 and hence the ratio ρz(0,ζ̄ )

−ρw(0,ζ̄ )

is constant in ζ ∈ S0,VI . Using this information and substituting the obtained formulas
in (7.5) we come to the desired conclusion. 
�
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Note that in Corollary 7.3 there are no restrictions on ρ and the coordinates chosen
other than ρw(0, 0) �= 0. However, if we choose (z, w) such that the complex tan-
gent space T c

0 M is given by w = 0, the conclusion of Corollary 7.3 is substantially
simplified:

Corollary 7.4 Let M ⊂ C
n+1 be a real-analytic hypersurface through 0 given by

ρ(Z , Z̄) = 0 with ρw(0, 0) �= 0 and ρz(0, 0) = 0. Suppose that M is transversally
embeddable into a real hyperquadric in C

n+m+1. Fix a proper subset I ⊂ {1, . . . , n}.
Then for any set of m + 1 multiindices α j , j = 1, . . . , m + 1, with |α j | = 2 and
supp α j ⊂ I , there is a relation of the form

∑

j

λ j ρzα j (0, ζ̄ ) = R1(ρzβ (0, ζ̄ )), ζ ∈ S0,VI , (7.8)

where (λ1, . . . , λm+1) �= 0 and R1 is a polynomial of degree at most 1 in the first
order derivatives of ρ.

Proof Recall from the proof of Corollary 7.3 that the ratio ρz(0,ζ̄ )

−ρw(0,ζ̄ )
is constant in

ζ ∈ S0,VI . Since now we assume ρz(0, 0) = 0, this ratio is actually zero. Then (7.7)

is reduced to Qz2(0, ζ̄ ) = ρz2 (0,ζ̄ )

−ρw(0,ζ̄ )
. The rest of the proof is completely analogous to

that of Corollary 7.3. 
�
Remark 7.5 As in Remark 2.4, we consider the special case m = 0, where Corollar-
ies 7.2–7.4 give obstructions preventing M from being (locally) biholomorphically
equivalent to a hyperquadric and make a comparison with the Chern–Moser normal
form

M =
{
Im w =

∑
aαµs zα z̄µ(Re w)s

}
, (7.9)

where, in particular, there are no pure terms zα and (Re w)s and the Levi form of M
at 0 is given by

∑±|z j |2. If all the first order derivatives ρzβ (0, ζ̄ ) are (affine) linear
functions (which is the case in the Chern–Moser normal form), Corollary 7.4 implies
that, in case M is equivalent to a hyperquadric, all second order derivatives ρzα (0, ζ̄ )

with supp α ⊂ I are linear in ζ ∈ S0,VI . Since S0 is given by w = 0, the property
ζ ∈ S0,VI means ζs = 0 for s ∈ I (i.e. ζ is orthogonal to VI with respect to the Levi
form). Now the mentioned linearity of ρzα (0, ζ̄ ) for ζ ∈ S0,VI means that aαµ0 = 0
whenever |α| = 2, |µ| ≥ 2 and

supp α ∩ supp µ = ∅. (7.10)

On the other hand, if M is equivalent to a hyperquadric, the Chern–Moser theory
implies the vanishing of certain terms of bidegree (2, 2) and (2, 3) in (z, z̄) in the
normal form. One can see that (7.10) is closely related to the trace-free parts of the
corresponding polynomials (see [5, p. 233]). However, as mentioned before, the actual
normal form can be hard to calculate, whereas Corollaries 7.2–7.4 can be applied
directly in any given coordinates.
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Obstructions to embeddability 719

We conclude this section by a series of explicit examples of manifolds M that
are not embeddable into hyperquadrics of certain dimensions by means of low order
obstructions.

Example 7.6 Consider any submanifold M ⊂ C
n+1 given by

ρ := −Im w +
n∑

s=1

±|zs |2 +
∑

|α|+k,|β|+l≥2

ραkβl z
αwk z̄βw̄l = 0. (7.11)

In fact, any M with nondegenerate Levi form can be written as (7.11), which is
a part of the Chern–Moser normalization. It easily follows that S0 = {w = 0},
ρw(0, ζ̄ ) = const and ρz(0, ζ̄ ) is linear in ζ̄ . We choose two sets of different multiin-
dices α1, . . . , αm+1 and β1, . . . , βm+1 with |α j | = 2, |β j | ≥ 2, such that

⎛

⎝
⋃

j

supp α j

⎞

⎠ ∩
⎛

⎝
⋃

j

supp β j

⎞

⎠ = ∅ (7.12)

and consider the determinant A of the matrix (ρα j 0βk 0) jk . Then if A �= 0, Corollary 7.4
implies that M is not transversally embeddable into any hyperquadric in C

n+m+1. In
particular, if

m + 1 ≤ 1

2

[n

2

] ([n

2

]
− 1

)
,

we can always choose βk with |βk | = 2 and thus have an obstruction of order 4.
Indeed, given (7.12), we can split the set {1, . . . , n} into disjoint subsets I1 and I2 with
[n/2] elements each and choose α j , βk with |α j | = |βk | = 2 such that supp α j ⊂ I1
and supp βk ⊂ I2.

8 Embeddability of submanifolds of higher codimension

8.1 Obstructions to embeddability

Our goal here will be to extend some of the preceding results from hypersurfaces to
generic submanifolds M ⊂ C

n+d of arbitrary codimension d.
We begin by giving a version of Proposition 3.2, where we adopt all the notation

from Sect. 3.2, except that we consider a holomorphic embedding H = (F, G) :
(Cn+d , 0) → (Cn × C

m+d , 0) (i.e. 1 is replaced with general codimension d), S ⊂
C

n+d is a complex submanifold of codimension d through 0, and choose the coordi-
nates (z, w) ∈ C

n × C
d . As before, S and S′ are respectively graphs of holomorphic

functions w = Q(z) and w′ = Q′(z′) near 0 with Q(0) = 0, Q′(0) = 0 and all
derivatives of Q and Q′ will be assumed taken at 0. We continue writing Qzα ∈ C

d

for a partial derivative with respect to a multiindex α ∈ N
n and denote by Qi

zα ∈ C the
components for 1 ≤ i ≤ d. Similar notation is used for Q′. We regard the derivative
Gw as an m × d matrix.
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Proposition 8.1 Under the normalization assumption (3.5), the partial derivatives of
Q and Q′ at 0 are related by the formula

Q′
z′α = Gw Qzα + Pα(Qi

zβ ), (8.1)

where Pα(Qi
zβ ) is a C

m-valued polynomial in the components of the lower order

derivatives Qi
zβ , |β| < |α|.

Proof The proof follows the line of the proof of Proposition 3.2, involving differen-
tiation of (3.3) and using induction on |α|. It is clear that Gw Qzα is the only term on
the right-hand side of (8.1) involving derivatives of Q of order k. The remainder is a
polynomial in the components of the lower order derivatives. The details are left to
the reader. 
�

We next give a version of Proposition 3.3, relating the derivatives of Q and ρ in the
same coordinates (z, w) ∈ C

n ×C
d . This time both Q(z, ζ ), (z, ζ ) ∈ C

d ×C
n+d , and

ρ(z, ζ ) are C
d -valued and the coordinates are chosen such that ρw(0, 0) is an invert-

ible d × d matrix. We write ρi
zβwγ ∈ C for the components of the partial derivatives

corresponding to integers 1 ≤ i ≤ d and multiindices β ∈ N
n and γ ∈ N

d .

Proposition 8.2 The derivatives of Q and ρ are related by the formula

Qzα (0, ζ̄ ) = −ρ−1
w (0, ζ̄ )ρzα (0, ζ̄ ) + Rα(ρi

zβwγ (0, ζ̄ ))

(det ρw(0, ζ̄ ))lα
, ζ ∈ S0, (8.2)

where Rα(ρi
zβwγ (0, ζ̄ )) is a C

d-valued polynomial in the partial derivative compo-

nents ρi
zβwγ (0, ζ̄ ) with |β| + |γ | ≤ |α|, |β| < |α|, and lα is a positive integer.

Proof Here we follow the line of the proof of Proposition 3.3. As in that proof, we
differentiate (3.19), this time a vector identity, and subsequently use induction on |α|
when substituting for the components of Qzβ (0, ζ̄ ) with |β| < |α|. The details are left
to the reader. 
�

We now turn to a version of Theorem 5.1 for higher codimension.

Theorem 8.3 Let M ⊂ C
n+d be a real-analytic generic submanifold through 0 given

by ρ(Z , Z̄) = 0 with ρw(0, 0) being invertible d × d matrix. Suppose that M is trans-
versally holomorphically embeddable into a hyperquadric in C

n+m+d . Then for any
set of m + d multiindices α j ∈ N

n, |α j | ≥ 2, j = 1, . . . , m + d, there exist integers
i0 ∈ {1, . . . , d} and k with K := { j : |α j | = k} �= ∅ such that the partial derivative
components of ρ satisfy a relation of the form

∑

j∈K

Pj (ρ
i
zβwγ (0, ζ̄ )) ρ

i0

zα j (0, ζ̄ ) = R(ρi
zβwγ (0, ζ̄ )), ζ ∈ S0, (8.3)

where Pj (ρ
i
zβwγ (0, ζ̄ )) and R(ρi

zβwγ (0, ζ̄ )) are polynomials in the partial derivative

components ρi
zβwγ (0, ζ̄ ) with |β| + |γ | ≤ k and either |β| < k or i �= i0, such that

not all Pj (ρ
i
zβwγ (0, ζ̄ )) identically vanish in ζ ∈ S0.
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Proof We follow the strategy of the proof of Theorem 5.1. We first establish a version
of Proposition 4.2. As in the proof of the latter, assuming a transversal embedding
H = (F, G) is given, we can perform a linear change of the coordinates in the target
space and a possible permutation of the components of w ∈ C

d in the source to obtain

(0, . . . , 0, 1) /∈ T c
0 M ′, Gw(0) = (0, id) : C

d → C
m × C

d .

Then we apply Proposition 8.1 (in place of Proposition 3.2) to obtain a relation

Q′
z′α (0, ζ̄ ) = (

0, Qzα (0, ζ̄ )
) +

(
Rα(Q j

zβ (0, ζ̄ )), T α(Q j
zβ (0, ζ̄ ))

)
∈ C

m × C
d , (8.4)

with Rα and T α being polynomials in the lower order derivatives components Q j
zβ

(0, ζ̄ ), |β| < |α|.
As in the proof of Proposition 4.2, we next apply Lemma 4.1 to the given m + d

(instead of m + 1) multiindices α1, . . . , αm+d (assumed to be ordered as |α1| ≤ · · · ≤
|αm+d |) to obtain an integer j0 and a j0 × j0 matrix (Q′h

z′α js
(0, ζ̄ )) with vanishing

determinant, whose leading ( j0 − 1) × ( j0 − 1) minor does not identically vanish.
Then substituting the right-hand side expressions from (8.4) for the matrix entries, we
obtain a relation

∑

j∈K

Pj (Qi
zβ (0, ζ̄ )) Qd

zα j (0, ζ̄ ) = R(Qi
zβ (0, ζ̄ )), ζ ∈ S, (8.5)

where K := { j : |α j | = k} �= ∅ for k := |α j0 | and Pj (Qi
zβ (0, ζ̄ )) and R(Qi

zβ (0, ζ̄ ))

are polynomials in the partial derivatives components Qi
zβ (0, ζ̄ ) with either |β| < k

or |β| = k and i �= d, and such that not all Pj (Qi
zβ (0, ζ̄ )) identically vanish. Note

that we previously made a possible permutation of the components of w, so that the
last component Qd

zα j (0, ζ̄ ) in (8.5) may actually correspond to another component

Qi0

zα j (0, ζ̄ ) in the original numeration.
Finally we follow the line of the proof of Theorem 5.1, where we apply Proposi-

tion 8.2 instead of Proposition 3.3 to pass from the identity (8.5) to an identity of the
form (8.3) as desired. 
�

8.2 Most generic submanifolds of higher codimension are not embeddable

Our goal here is to use Theorem 8.3 in order to give an affirmative answer to a ques-
tion by Forstnerič [11]. Informally speaking, this question is whether the set of all
generic submanifolds of higher codimension, which are holomorphically embeddable
into algebraic strongly pseudoconvex hypersurfaces, is of the first category.

To state the question more precisely, let us recall some notation from [11]. Recall
that every germ of a generic real-analytic submanifold M ⊂ C

n+d of codimension d
is biholomorphically equivalent to one of the form

M = {Im w = r(Re z, Im z, Re w)} , (z, w) ∈ C
n × C

d , (8.6)
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where
r(x, y, u) =

∑

α,β∈Nn ,γ∈Nd

cαβγ xα yβuγ , x, y ∈ R
n, u ∈ R

d , (8.7)

is a R
d -valued convergent power series without constant and linear terms. Then all

convergent power series in (8.7) can be written as ∪t>0Rt , where Rt is the space of
all series (8.7) for which the norm

‖r‖t :=
∑

α,β,γ

|cαβγ |t |α|+|β|+|γ | (8.8)

is finite. Clearly Rt is a Banach space with the norm ‖r‖t . Finally recall that a real
submanifold M ⊂ C

n+d is called algebraic if it is contained in a real-algebraic variety
of C

n+d ∼= R
2(n+d) of the same dimension as M .

We now state our main result of this section.

Theorem 8.4 For every t > 0, the set of all r ∈ Rt , for which the germ (M, 0)

given by (8.6) is transversally holomorphically embeddable into a hyperquadric in
any dimension, is of the first category (in the Banach space Rt ).

Theorem 8.4 answers the above question by Forstnerič in view of the result by Web-
ster [18] stating that any Levi-nondegenerate real-algebraic hypersurface is always
transversally holomorphically embeddable into a Levi-nondegenerate hyperquadric
(of possibly high dimension depending on the hypersurface).

Proof of Theorem 8.4 We first rewrite the power series r in the complex form:

r =
∑

α,β∈Nn ,γ∈Nd

rαβγ zα z̄βuγ , z ∈ R
n, u ∈ R

d . (8.9)

Then we can identify the elements of Rt with the power series (8.9) without constant
and linear terms whose coefficients rαβγ satisfy the reality condition rαβγ = rβαγ .
As the next step we eliminate all pure terms rα00zα by subtracting them from r . The
corresponding transformation is biholomorphic and hence does not change the biho-
lomorphic equivalence class of (M, 0). Denote by Rt

0 ⊂ Rt the subspace of all series
with rα00 = 0 for all α. Then it is sufficient to prove the statement for Rt

0, i.e. to
show that the set of all (M, 0) corresponding to elements in Rt

0, that are transversally
embeddable into a hyperquadric, is of the first category in Rt

0.
We now consider germs (M, 0) given by some r ∈ Rt

0 that are transversally em-
beddable into a hyperquadric in C

n+m+d for some fixed m. For every such (M, 0), we
can apply Theorem 8.3 using the defining function ρ of M given by

ρ(z, w, z̄, w̄) := −Im w + r(Re z, Im z, Re w)

and obtain a relation (8.3). Since r has no pure terms with zα , we have ρ(z, 0, 0, 0) ≡ 0,
implying that S0 = {w = 0}. Then Theorem 8.3 yields, in particular, for some i0 and
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k, a polynomial identity

∑

|α|=k

Pα(ρi
zβwγ (0, χ̄ , 0)) ρ

i0
zα (0, χ̄ , 0)= R(ρi

zβwγ (0, χ̄ , 0)), ζ =(χ, τ ) ∈ C
n × C

d ,

(8.10)

with Pα and R being polynomials as in Theorem 8.3 and not all Pα(ρi
zβwγ (0, χ̄ , 0))

identically vanishing.
In our next step we consider the following standard lexicographic order on the set

of all multiindices α = (α1, . . . , αn) ∈ N
n . We write α < β if either |α| < |β| or

|α| = |β| and for some 1 ≤ s ≤ n, α j = β j for all j < s but αs < βs . We also write
α ≤ β if either α < β or α = β. Then the set N

n becomes linearly ordered with the
following additive property:

α1 ≤ β1, α2 ≤ β2 �⇒ α1 + α2 ≤ β1 + β2. (8.11)

We now fix i0, k and a multiindex α0 with |α0| = k and consider the set of all r ∈ Rt
0,

for which a relation (8.10) holds with the coefficient Pα0(ρ
i
zβwγ (0, χ̄ , 0)) �≡ 0. Using

the lexicographic order introduced above we may consider the minimal multiindex

ν0 = ν0

(
Pα0(ρ

i
zβwγ (0, χ̄ , 0))

)
corresponding to a nonzero monomial in the expan-

sion of Pα0(ρ
i
zβwγ (0, χ̄ , 0)). In addition to the previous data, we also fix this minimal

multiindex ν0 as well as the degrees of the polynomials Pα and R. It is clearly suffi-
cient to prove that the set of all r ∈ Rt

0 with ρ satisfying (8.10) with the above data
fixed, is of the first category.

Going back to (8.10), we expand both sides as power series in χ̄ and obtain recursive
relations for the terms of ρ

i0
zα0 (0, χ̄ , 0) as follows. For every multiindex µ, |µ| ≥ 1,

identify the monomials in the expansion with χ̄ ν0+µ. Then, since Pα0(ρ
i
zβwγ (0, χ̄ , 0))

contains a nontrivial monomial with χ̄ ν0 , we have a nontrivial contribution of the
corresponding monomial with χ̄µ in the expansion of ρ

i0
zα0 (0, χ̄ , 0). (The latter mono-

mial may be assumed nonvanishing, since it vanishes only for a set of r ’s of the first
category.) Furthermore, it follows from the property of ν0 and (8.11) that the contrib-
uting multiindices corresponding to all other nontrivial monomials in the expansion
of ρ

i0
zα0 (0, χ̄ , 0) are smaller than µ. Thus we can express the coefficient in front of

χ̄µ in the expansion of ρ
i0
zα0 (0, χ̄ , 0) as a rational function of its other coefficients

corresponding to smaller monomials (with respect to our lexicographic order), the
coefficients of other derivatives ρi

zβwγ (0, χ̄ , 0) and the coefficients of Pα and R. By
induction, we can then express the coefficients of χ̄µ as a rational function only of
the coefficients of other derivatives and the polynomials Pα and R. The denominator
of this rational function is precisely the minimal multiindex coefficient in the expan-
sion of Pα0(ρ

i
zβwγ (0, χ̄ , 0)), and hence it does not vanish since we have assumed this

coefficient to be nonzero.
The final observation involves sufficiently large truncations of the series in Rt

0
(similar to [11]). It is clear that the dimension of the corresponding truncation space
for the coefficients of Pα0(ρ

i
zβwγ (0, χ̄ , 0)) is arbitrarily large, whereas the dimension
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of the polynomial coefficients of Pα and R is fixed by our choice. Hence, choosing
sufficiently large truncations, the condition for the coefficients of ρ

i0
zα0 (0, χ̄ , 0) to be

given by a rational function as above, defines a nowhere dense subset. Going back to
the space Rt

0 before the truncation, we can see that the corresponding subset there is
also nowhere dense, hence is of the first category as desired. The details are left to the
reader. 
�

Appendix A: Obstructions to biholomorphic equivalence to real-algebraic
submanifolds

Here we briefly illustrate how our methods can be used to obtain obstructions to biho-
lomorphic equivalence to real-algebraic submanifolds. The proofs are self-contained
and do not depend on the previous sections. In particular, no elaborate weight estimates
are needed here.

Theorem A.1 Let M ⊂ C
n+d be a real-analytic generic submanifold of codimension

d through 0 given by an equation w = Q(z, z̄, w̄), (z, w) ∈ C
n × C

d , where Q is a
C

d-valued holomorphic function in a neighborhood of the origin. Suppose that M is
biholomorphically equivalent to a real-algebraic generic submanifold of C

n+d . Then
any set of n + 1 partial derivatives of the components, Qi1

zα1 (0, ζ̄ ), . . . , Qin+1
zαn+1 (0, ζ̄ ),

with ζ varying in the Segre variety S0, is algebraically dependent, i.e. satisfies a
nontrivial polynomial equation P(Qi1

zα1 (0, ζ̄ ), . . . , Qin+1
zαn+1 (0, ζ̄ )) = 0.

Proof Let H = (F, G) : (Cn × C
d , 0) → (Cn × C

d , 0) be a local biholomorphic
map sending a neighborhood of 0 in M into a real-algebraic generic submanifold
M ′ ⊂ C

n+d that we may assume being given by w′ = Q′(z′, z̄′, w̄′), where Q′ is
a (complex-)algebraic holomorphic C

d -valued function satisfying Q′
z′(0, 0, 0) = 0.

The latter implies that the d × d matrix Gw(0) is invertible. Then for every k ≥ 1, the
holomorphic map

µQ′,k : ζ̄ ′ ∈ S′
0 �→ (Q′ j

z′β (0, ζ̄ ′))1≤ j≤d,|β|≤k ∈ C
N , (A.1)

with appropriate N , is algebraic. Recall that dim S′
0 = n. Then by Chevalley’s theo-

rem (see, e.g. [16, p. 72]), the image of µQ′,k is contained in an algebraic variety of
dimension n.

The property that H sends M into M ′ can be expressed (after complexification) as

G(z, Q(z, ζ̄ )) = Q′(F(z, Q(z, ζ̄ )), H̄(ζ̄ )). (A.2)

Differentiating in z at (z, ζ̄ ) ∈ {0} × S0 and using the properties Q(0, ζ̄ ) = 0 for
ζ ∈ S0, we conclude by induction on |α| that each derivative Qi

zα (0, ζ̄ ), 1 ≤ i ≤ d,

|α| ≤ k, can be expressed as a rational function of Q′ j
z′β (0, H̄(ζ̄ )), 1 ≤ j ≤ d, |β| ≤ k,

with poles away from µQ′,k(0). In particular, applying Chevalley’s theorem we see

that, for ν(ζ̄ ) := (Qi1
zα1 (0, ζ̄ ), . . . , Qin+1

zαn+1 (0, ζ̄ )) the image of ν ◦ H̄ is also contained
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in in an algebraic variety of dimension n. Furthermore, since H̄ maps S0 locally biho-
lomorphically onto S′

0 near 0, it follows that the image ν(S0) is contained in the same
algebraic variety of dimension n. The claimed algebraic dependence now immediately
follows. 
�

As in case of Theorem 2.2 above, we obtain an immediate consequence in the
special case when M is rigid:

Corollary A.2 Let M ⊂ C
n+d be a real-analytic generic submanifold of codimen-

sion d through 0 given in its rigid form by Im w = ϕ(z, z̄), (z, w) ∈ C
n × C

d .
Suppose that M is biholomorphically equivalent to a real-algebraic generic sub-
manifold of C

n+d . Then any set of n + 1 partial derivatives of the components,
ϕ

i1
zα1 (0, χ̄), . . . , ϕ

in+1
zαn+1 (0, χ̄) with χ ∈ C

n near the origin, is algebraically depen-
dent.

In particular, specializing further to the tube case, we have:

Corollary A.3 Let M ⊂ C
n+d be a real-analytic generic submanifold of codimension

d through 0 given in its tube form by Im w = ϕ(Im z), (z, w) ∈ C
n ×C

d . Suppose that
M is biholomorphically equivalent to a real-algebraic generic submanifold of C

n+d .
Then any set of n + 1 partial derivatives of the components, ϕ

i1
zα1 (x), . . . , ϕ

in+1
zαn+1 (x)

with x ∈ R
n near the origin, is algebraically dependent.

Some of the algebraic dependence relations in Corollary A.3 (with i1 = · · · = in+1,
|αs | ≤ 2, in case M is minimal and finitely nondegenerate and its infinitesimal CR
automorphism algebra has minimum possible dimension) are contained in [12] as
mentioned before in the introduction.

We conclude by mentioning that Proposition 3.3 can be used to obtain a version of
Theorem A.1 with algebraic dependence relations for the derivatives of (the compo-
nents of) any defining function rather than the function Q, similarly to Theorem 2.2
(or Theorem 5.1) being obtained from Proposition 4.2.
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