1. Introduction and results. The classical Schwarz reflection principle states that a continuous map f between real-analytic curves M and M' in \mathbb{C} that locally extends holomorphically to one side of M, extends also holomorphically to a neighborhood of M in \mathbb{C}. It is well-known that the higher-dimensional analog of this statement for maps $f: M \to M'$ between real-analytic CR-submanifolds $M \subset \mathbb{C}^N$ and $M' \subset \mathbb{C}^{N'}$ does not hold without additional assumptions (unless M and M' are totally real). In this paper, we assume that f is C^1-smooth and that the target M' is real-algebraic, i.e. contained in a real-algebraic subset of the same dimension. If f is known to be locally holomorphically extendible to one side of M (when M is a hypersurface) or to a wedge with edge M (when M is a generic submanifold of higher codimension), then f automatically satisfies the tangential Cauchy-Riemann equations, i.e. it is CR. On the other hand, if M is minimal, any CR-map $f: M \to M'$ locally extends holomorphically to a wedge with edge M by Tumanov’s theorem [Tu88] and hence, in that case, the extension assumption can be replaced by assuming f to be CR.

Local holomorphic extension of a CR-map $f: M \to M'$ may clearly fail when M' contains an (irreducible) complex-analytic subvariety E' of positive dimension and $f(M) \subset E'$. Indeed, any nonextendible CR-function on M composed with a nontrivial holomorphic map from a disc in \mathbb{C} into E' yields a counterexample. Our first result shows that this is essentially the only exception. Denote by E' the set of all points $p' \in M'$ through which there exist irreducible complex-analytic subvarieties of M' of positive dimension. We prove:

Theorem 1.1. Let $M \subset \mathbb{C}^N$ and $M' \subset \mathbb{C}^{N'}$ be respectively connected real-analytic and real-algebraic CR-submanifolds. Assume that M is minimal at a point $p \in M$. Then for any C^∞-smooth CR-map $f: M \to M'$, at least one of the following conditions holds:

(i) f extends holomorphically to a neighborhood of p in \mathbb{C}^N;

(ii) f sends a neighborhood of p in M into E'.

If M' is a real-analytic hypersurface, the set E' consists exactly of those points that are not of finite type in the sense of D’Angelo [D’A82] (see Lempert [L86] for the proof) and, in particular, E' is closed. The same fact also holds if M' is any real-analytic submanifold or even any real-analytic subvariety (see [D’A91]). However, in general, E' may not even be a real-analytic subset (see Example 2.1). In case $E' = V'$ is a subvariety, we have:

Corollary 1.2. Let $M \subset \mathbb{C}^N$ and $M' \subset \mathbb{C}^{N'}$ be as in Theorem 1.1. Assume that M is minimal at a point $p \in M$ and that all positive-dimensional irreducible complex-algebraic subvarieties in M' are contained in a fixed (complex-algebraic) subvariety $V' \subset \mathbb{C}^{N'}$.

Received December 10, 2002; accepted for publication June 6, 2003.

1 Institut de Mathématiques, Université de Fribourg, 1700 Perolles, Fribourg, Switzerland (francine.meylan@unifr.ch).

2 Université de Rouen, Laboratoire de Mathématiques Raphaël Salem, UMR 6085 CNRS, 76821 Mont-Saint-Aignan Cedex, France (Nordine.Mir@univ-rouen.fr).

3 School of Mathematics, Trinity College, Dublin 2, Ireland (zaitsev@maths.tcd.ie).