REMARKS ON THE RIGIDITY OF CR-MANIFOLDS

SUNG-YEON KIM AND DMITRI ZAITSEV

Abstract. We propose a procedure to construct new smooth CR-manifolds whose local stability groups, equipped with their natural topologies, are subgroups of certain (finite-dimensional) Lie groups but not Lie groups themselves.

1. Introduction

Given a germ (M, p) of a real submanifold of \mathbb{C}^n, its basic invariant is the local stability group $\text{Aut}(M, p)$, i.e. the group of all germs at p of local biholomorphic maps of \mathbb{C}^n fixing p and preserving the germ (M, p). By the work of several authors [CM74, BER97, Z97, ELZ03, LM05] it is known that this group is a (finite-dimensional) Lie group (in the natural inductive limit topology) for germs of real-analytic submanifolds satisfying certain nondegeneracy conditions, e.g. those having nondegenerate Levi form. On the other hand, in the absence of the nondegeneracy conditions, the group $\text{Aut}(M, p)$ can possibly be infinite-dimensional (in the sense that it contains Lie groups of arbitrarily large dimension). (E.g. the local stability group of $(\mathbb{R}, 0)$ in \mathbb{C} consists of all convergent power series with real coefficients.) Furthermore, recent results in [BRWZ04] show that a similar principle also holds for global CR-automorphisms, both real-analytic and smooth.

One purpose of this paper is to show that, in contrast with the behaviour mentioned above, a similar alternative does not anymore hold for the local stability group of a smooth real submanifold. In particular, we show that, for any $n \geq 2$, there exists a germ (M, p) of a smooth strongly pseudoconvex hypersurface in \mathbb{C}^n with $\text{Aut}(M, p)$ being (topologically) isomorphic to a countable dense subgroup of the circle $S^1 \subset \mathbb{C}$ and hence not being a Lie group. In fact, $\text{Aut}(M, p)$ can be arranged to be isomorphic to any increasing countable union of finite subgroups of S^1, for instance, to the subgroup

$$\{e^{2\pi i \frac{l}{m}} : l, m \in \mathbb{N}\} \subset S^1.$$ \hfill (1.1)

Furthermore, our construction yields similar properties also for the (generally larger) local CR stability group $\text{Aut}_{\text{CR}}(M, p)$, consisting of all germs at a point p of smooth CR-automorphisms of M fixing p. Recall that a germ of a smooth transformation $\varphi : (M, p) \to (M, p)$ is a CR-automorphism if it preserves the subbundle $T^c M$ and and the restriction
of its differential $d\varphi|_{T^*M}$ is \mathbb{C}-linear, where

$$T^*M := TM \cap iTM.$$

Another purpose of this paper is to provide a general construction of new smooth generic submanifolds with certain prescribed local CR stability groups (recall that a real submanifold $M \subset \mathbb{C}^n$ is generic if $T_qM + iT_qM = T_q\mathbb{C}^n$ for all $q \in M$). More precisely, we show the following:

Theorem 1.1. Let (M, p) be a germ of a smooth generic submanifold in \mathbb{C}^n of positive codimension and of finite type and assume that it is invariant under an increasing countable union G of finite subgroups of $\text{Aut}(\mathbb{C}^n, p)$. Then there exists a G-invariant germ of another smooth generic submanifold (\tilde{M}, p) of the same dimension as (M, p), which is tangent to (M, p) of infinite order and has the following properties:

(i) $\text{Aut}(\tilde{M}, p) = G$;

(ii) $\text{Aut}_{CR}(\tilde{M}, p) = \{g|_M : g \in G\}$.

We use here the notion of finite type due to Kohn [K72] and Bloom-Graham [BG77]: a germ (M, p) is of finite type, if all germs at p of smooth real vector fields on M tangent to T^*M span together with their iterated commutators the full tangent space T_pM.

We now illustrate Theorem 1.1 by an example, where it can be applied.

Example 1.2. Consider a real hypersurface $M \subset \mathbb{C}^{n+1}, n \geq 1$, given in coordinates $(z_1, \ldots, z_n, w) \in \mathbb{C}^{n+1}$ by

$$\text{Im} w = \varphi(|z_1|^2, z_2, \ldots, z_n, \bar{z}_2, \ldots, \bar{z}_n, \text{Re} w),$$

where φ is any smooth function such that $0 \in M$ and $(M, 0)$ is of finite type. Then $(M, 0)$ is clearly invariant under the rotation group consisting of all transformations $(z_1, z_2, \ldots, z_n, w) \mapsto (e^{2\pi i \theta} z_1, z_2, \ldots, z_n, w)$ for all real θ. Now we can take the subgroup G consisting of all these transformations corresponding to $\theta = l/2m$ with l, m being positive integers. Then G clearly satisfies the assumptions of Theorem 1.1. We then conclude that there exists a new real submanifold $\tilde{M} \subset \mathbb{C}^{n+1}$ such that both $\text{Aut}(\tilde{M}, p)$ and $\text{Aut}_{CR}(\tilde{M}, p)$ are (topologically) isomorphic to G, which is a topological subgroup of S^1 but is not itself a Lie group. Similar examples can be obtained for other S^1-actions or $S^1 \times S^1$-actions or actions by more general compact groups leaving (M, p) invariant, where M can also be of any codimension.

As a remarkable consequence of Theorem 1.1 and the mentioned results [BER97, Z97], our construction provides germs of smooth generic submanifolds (even of strongly pseudoconvex hypersurfaces) that are not CR-equivalent to any germ of any real-analytic CR-manifold. Recall that (M, p) is called finitely nondegenerate if

$$\text{span}_{\mathbb{C}} \{L_1 \ldots L_k \rho_j^p(p) : k \geq 0, 1 \leq j \leq d\} = \mathbb{C}^n,$$

(1.2)
where \(\rho = (\rho^1, \ldots, \rho^d) \) is a defining function of \(M \) near \(p \) with \(\partial \rho^1 \wedge \cdots \wedge \partial \rho^d \neq 0 \), \(\rho_z^i \) denotes the complex gradient of \(\rho^i \) in \(\mathbb{C}^n \) and the span is taken over all collections of germs at \(p \) of smooth \((0, 1)\) vector fields \(L_1 \ldots L_k \) on \(M \). We have:

Corollary 1.3. For any germ \((M, p)\) of a smooth generic submanifold in \(\mathbb{C}^n \), which is finitely nondegenerate and of finite type, and which is invariant under the group \(S^1 := \{ z \in \mathbb{C} : |z| = 1 \} \) acting on \(\mathbb{C}^n \) by multiplication, there exists a germ of another smooth generic submanifold \((\hat{M}, p)\), tangent to \((M, p)\) of infinite order, which is not CR-equivalent to any germ of a real-analytic generic submanifold of \(\mathbb{C}^n \).

Indeed, since \(S^1 \) has many dense subgroups \(G \) satisfying the assumptions of Theorem 1.1 (e.g. the subgroup in (1.1)), Theorem 1.1 yields a germ \((\hat{M}, p)\) whose local CR stability group is isomorphic to \(G \) and hence is not topologically isomorphic to any Lie group (and not locally compact). On the other hand, the local CR stability group of any real-analytic generic submanifold of \(\mathbb{C}^n \), which is CR-equivalent to \((\hat{M}, p)\) (and hence is also finitely nondegenerate and of finite type), is known to be always a Lie group (see [BER97] for hypersurfaces and [Z97] for higher codimension). Since the local CR stability group is a CR-invariant, \((\hat{M}, p)\) cannot be CR-equivalent to any germ of a real-analytic generic submanifold of \(\mathbb{C}^n \).

Acknowledgement. The authors would like to thank the referee for careful reading of the manuscript and many critical suggestions.

2. Jet spaces and jet groups

Here we recall the jet terminology and introduce the notation that will be used throughout the paper. Recall that, given two complex manifolds \(X \) and \(X' \) and an integer \(k \geq 0 \), a \(k \)-jet of a holomorphic map is an equivalence class of holomorphic maps from open neighborhoods of \(x \) in \(X \) into \(X' \) with fixed partial derivatives at \(x \) up to order \(k \). Denote by \(J^k_x(X, X') \) the set of all such \(k \)-jets. The union \(J^k(X, X') := \bigcup_{x \in X} J^k_x(X, X') \) carries a natural fiber bundle structure over \(X \). For a holomorphic map \(f \) from a neighborhood of \(x \) in \(X \) into \(X' \), denote by \(j^k_x f \in J^k_x(X, X') \) the corresponding \(k \)-jet. In local coordinates, \(j^k_x f \) can be represented by the coordinates of the reference point \(x \) and all partial derivatives of \(f \) at \(x \) up to order \(k \). If \(X' \) and \(X' \) are smooth algebraic varieties, \(J^k_x(X, X') \) and \(J^k(X, X') \) are also of this type. We also denote by \(J^k_{x,x'}(X, X') \) the space of all invertible \(k \)-jets sending \(x \) into \(x' \). The subset \(G^k_x(X) \subset J^k_{x,x}(X, X) \) of all invertible \(k \)-jets forms an algebraic group with respect to composition. Completely analogously \(k \)-jets of smooth maps between smooth real manifolds \(M \) and \(M' \) are defined, for which we shall use the same notation \(J^k(M, M') \). The possible confusion will be eliminated by the convention that we write \(X_\mathbb{R} \) whenever we consider a complex manifold \(X \) as a real manifold. Thus, if \(X \) and \(X' \) are complex manifolds, \(J^k(X, X') \) is the space of all \(k \)-jets of holomorphic maps and \(J^k(X_\mathbb{R}, X'_\mathbb{R}) \) is the space of all \(k \)-jets of smooth maps.
Furthermore, we shall need \(k \)-jets of real submanifolds of fixed dimension of a smooth real manifold \(M \). Let \(\mathcal{C}_{k}^{m}(M) \) be the set of all germs at \(x \) of real \(C^{k} \)-smooth \(m \)-dimensional submanifolds of \(M \) through \(x \). We say that two germs \(V, V' \in \mathcal{C}_{k}^{m}(M) \) are \(k \)-equivalent, if, in a local coordinate neighborhood of \(0 \), the union \(\bigcup_{x \in M} J_{x}^{k,m}(M) \) with the natural fiber bundle structure over \(M \). Furthermore, for any real \(C^{k} \)-smooth \(m \)-dimensional submanifold \(V \subset M \) through \(x \), denote by \(J^{k,m}(V) \in J_{x}^{k,m}(M) \) the corresponding \(k \)-jet. The space \(J_{x}^{k,m}(M) \) carries a natural real (nonsingular) algebraic variety structure.

We now introduce the notions of equivalence and rigidity that will be crucial in the sequel.

Definition 2.1.

1. Two \(k \)-jets of real submanifolds of the same dimension \(\Lambda_{j} \in J_{p_{j}}^{k,m}(\mathbb{C}_{R}^{n}), j = 1, 2 \), are called biholomorphically equivalent if there exists a germ of a biholomorphic map \((\mathbb{C}^{n}, p_{j}) \to (\mathbb{C}^{n}, p_{2}) \) sending \(\Lambda_{1} \) to \(\Lambda_{2} \).

2. A \(C^{k} \)-smooth generic submanifold \(M \subset \mathbb{C}^{n} \) is called totally rigid of order \(k \), if for any \(p_{1} \neq p_{2} \in M \), the jets \(J_{p_{1}}^{k}(M) \) and \(J_{p_{2}}^{k}(M) \) are not biholomorphically equivalent in the sense of (1).

3. A \(k \)-jet \(\Lambda \in J_{p}^{k,m}(\mathbb{C}_{R}^{n}) \) is called totally rigid if any \(C^{k} \)-smooth submanifold passing through \(p \) and having \(\Lambda \) as its \(k \)-jet at \(p \), contains a neighborhood of \(p \) that is totally rigid of order \(k - 1 \) in the sense of (2).

Example 2.2. Any 0-jets of real submanifolds at \(p \) are obviously biholomorphically equivalent and 1-jets are equivalent if and only if their CR-dimensions at \(p \) are the same. Two 2-jets of generic submanifolds are equivalent if and only their Levi forms at \(p \) are linearly equivalent (e.g. of the same rank and signature in the hypersurface case). Furthermore it follows from the Chern-Moser theory [CM74] that two \(k \)-jets of Levi-nondegnerate hypersurfaces of the same signature are always biholomorphically equivalent for \(k \leq 5 \) in case \(n = 2 \) and for \(k \leq 3 \) in case \(n > 2 \), but may not be equivalent in general for \(k \) larger.

It is crucial for our method to consider the total rigidity of order \(k - 1 \) in (3) (rather then e.g. of order \(k \)) for the representing submanifolds \(M \) with \(J_{p}^{k}(M) = \Lambda \). This allows us to achieve the total rigidity of \(M \) of order \(k - 1 \) near \(p \) by ensuring that the first order derivatives of \(J_{q}^{k-1}(M) \) at \(p \) as function of \(q \in M \) have suitable transversality property with respect to the submanifolds (orbits) of biholomorphically equivalent \((k-1)\)-jets (see the proof of Proposition 2.3 below for more details). Thus we need \(\Lambda \) to be of higher order than \(k - 1 \) to include the extra derivatives. More precisely, the existence of totally rigid jets is guaranteed by the following statement.

Proposition 2.3. For fixed integers \(n < m < 2n \), a point \(p \in \mathbb{C}^{n} \) and sufficiently large \(k \) (depending on \(n \) and \(m \) but not on \(p \)), the set of all totally rigid \(k \)-jets in \(J_{p}^{k,m}(\mathbb{C}_{R}^{n}) \) contains an open dense subset.
In fact we show that the number k in Proposition 2.3 can be chosen such that the following inequality holds:

$$
(2n - m) \left(\binom{k + m - 1}{m} - 1 \right) - 2n \left(\binom{k + n - 1}{n} - 1 \right) \geq m. \tag{2.1}
$$

The proof will be based on the following lemmas (of which the first is standard and provided with a short proof for the reader’s convenience). We write $\| \cdot \|_{C^l}$ for the standard C^l norm.

Lemma 2.4. Let $\varphi: \mathbb{R}^n \to \mathbb{R}^m$ be a smooth map and V be an open neighborhood in \mathbb{R}^n of a point $a \in \mathbb{R}^n$. Then for any $\epsilon > 0$ and any integers $0 \leq k \leq l$, there exists $\delta > 0$ such that, if $\Lambda \in J^k_a(\mathbb{R}^n, \mathbb{R}^m)$ is a k-jet with $\|\Lambda - j^k_a\varphi\| < \delta$, then there exists another smooth map $\tilde{\varphi}: \mathbb{R}^n \to \mathbb{R}^m$ such that $j^k_a\tilde{\varphi} = \Lambda$, $\tilde{\varphi}|_{\mathbb{R}^n \setminus V} = \varphi|_{\mathbb{R}^n \setminus V}$ and $\|\tilde{\varphi} - \varphi\|_{C^l} < \epsilon$.

Proof. Without loss of generality, V is bounded. We shall look for a map $\tilde{\varphi}: \mathbb{R}^n \to \mathbb{R}^m$ of the form

$$
\tilde{\varphi}(x) := \varphi(x) + \chi(x) \cdot (\psi(x) - \varphi(x)), \tag{2.2}
$$

where $\psi: \mathbb{R}^n \to \mathbb{R}^m$ is a smooth map with $j^k_\psi = \Lambda$ and $\chi: \mathbb{R}^n \to \mathbb{R}$ is a fixed smooth function which is 1 in a neighborhood of a and 0 outside V. Then $j^k_\tilde{\varphi} = \Lambda$ and $\tilde{\varphi}|_{\mathbb{R}^n \setminus V} = \varphi|_{\mathbb{R}^n \setminus V}$. Furthermore, there exists $C > 0$ depending on χ but not on ψ such that

$$
\|\tilde{\varphi} - \varphi\|_{C^l} < C\|\psi - \varphi\|_{C^l}.
$$

If δ is sufficiently small and Λ satisfies our assumption, we can always choose ψ with $\|\psi - \varphi\|_{C^l} < \epsilon/C$ on the closure \overline{V}. Then the map $\tilde{\varphi}$ given by (2.2) satisfies the required properties. \qed

Lemma 2.5. Let $k, l, s \geq 0$ and $0 \leq r \leq m$ be any integers, $U \subset J^l(\mathbb{R}^n, \mathbb{R}^s)$ be an open set and $F: U \to \mathbb{R}^r$ be a smooth map of constant rank r. Then, for any nonempty open set $B \subset \mathbb{R}^m$ and a smooth map $f: B \to \mathbb{R}^s$ satisfying $j^l_xf \in U$ for all $x \in B$, there exists another nonempty open subset $\tilde{B} \subset B$ and another smooth map $\hat{f}: \tilde{B} \to \mathbb{R}^s$ such that the following holds:

1. the C^k norm of $\hat{f} - (f|_{\tilde{B}})$ can be chosen arbitrarily small;
2. $j^l_x\hat{f} \in U$ for all $x \in \tilde{B}$;
3. the map $x \in \tilde{B} \mapsto F(j^l_x\hat{f}) \in \mathbb{R}^r$ is also of constant rank r.

Proof. Without loss of generality, the integer k (used only in (1)) is $\geq l$. We prove the lemma by induction on r. For $r = 0$ the statement is trivial. Suppose it holds for any $r < r_0 \leq m$ and we are given a map $F: U \to \mathbb{R}^{r_0}$ as in the lemma. Consider the standard splitting $\mathbb{R}^{r_0} = \mathbb{R}^{r_0-1} \times \mathbb{R}$ and the corresponding components $F_1: U \to \mathbb{R}^{r_0-1}$ and $F_2: U \to \mathbb{R}$ of F (so that $F = (F_1, F_2)$). Then the induction assumption for F_1 yields a map $\hat{f}: \tilde{B} \to \mathbb{R}^{r_0-1}$ such that $\|\hat{f} - (f|_{\tilde{B}})\|_{C^k}$ is arbitrarily small, $j^l_x\hat{f} \in U$ for all $x \in \tilde{B}$ and the map $\Phi_1(x) := F_1(j^l_x\hat{f}) \in \mathbb{R}^{r_0-1}$ is of constant rank $r_0 - 1 < m$ for $x \in \tilde{B}$. By shrinking \tilde{B} if
necessary, we may assume it is connected and of the form \(\widehat{B} = \widehat{B}_1 \times \widehat{B}_2 \subset \mathbb{R}^{m-r_0+1} \times \mathbb{R}^{r_0-1} \) and such that, for some \(c \in \mathbb{R}^{r_0-1} \), the level set \(\mathcal{C} := \{ x \in \widehat{B} : \Phi_1(x) = c \} \) is a graph of a smooth map \(\varphi : \widehat{B}_1 \to \widehat{B}_2 \).

We now consider two points \(x_1 \neq x_2 \in \mathcal{C} \) and look for a small perturbation \(\tilde{f} \) of \(f \) and \(\tilde{x}_2 \) of \(x_2 \) such that \(x_1 \) and \(\tilde{x}_2 \) still belong to the same level set \(\tilde{C} = \{ x \in \widehat{B} : \Phi_1(x) = \Phi_1(\tilde{x}_2) \} \). More precisely, suppose that \(F(j^{1}_{x_1} \tilde{f}) = F(j^{1}_{x_2} \tilde{f}) \) (otherwise no perturbation is needed). By the assumption of the lemma, the map \(F = (F_1, F_2) \) has constant rank \(r_0 \) in \(U \). Since \(r_0 \leq m \leq \dim U \), we can find a point \(\tilde{x}_2 \in \widehat{B} \) and a jet \(\Lambda \in U \cap J^1_{\tilde{x}_2}(\mathbb{R}^m, \mathbb{R}^n) \) arbitrarily close to \(j^{1}_{\tilde{x}_2} \tilde{f} \) such that \(F_1(\Lambda) = F_1(j^{1}_{\tilde{x}_2} \tilde{f}) \) but \(F_2(\Lambda) \neq F_2(j^{1}_{x_2} \tilde{f}) \). Since \(\Lambda \) can be chosen arbitrarily close to \(j^{1}_{\tilde{x}_2} \tilde{f} \), it can be represented by a smooth map \(\tilde{f} \) that is arbitrarily close to \(\tilde{f} \) in the \(C^k \)-norm and differs from it on a neighborhood of \(x_2 \) with compact support in \(\widehat{B} \setminus \{ x_1 \} \) in view of Lemma 2.4. By choosing the norm \(\| f - \tilde{f} \|_{C^k} \) sufficiently small, we shall preserve the properties that \(j^{1}_{x_1} \tilde{f} \in U \) for all \(x \in \widehat{B} \), the rank of \(\Phi_1(x) := F_1(j^{1}_{x_1} \tilde{f}) \) is still \(r_0 - 1 \) and the level set \(\mathcal{C} := \{ x \in \widehat{B} : \Phi_1(x) = c \} \) is still a graph of a smooth map \(\varphi : \widehat{B}_1 \to \widehat{B}_2 \). Hence \(\mathcal{C} \) is a connected manifold containing two points \(x_1, \tilde{x}_2 \in \mathcal{C} \) such that \(F_2(j^{1}_{x_2} \tilde{f}) \neq F_2(j^{1}_{\tilde{x}_2} \tilde{f}) \). The latter fact implies that the function \(\Phi_2(x) := F_2(j^{1}_{x} \tilde{f}) \) is not constant on \(\mathcal{C} \) and therefore its differential is somewhere nonzero. Putting this property together with the rank property of \(\Phi_1 \), we conclude that the rank of \(\Phi(x) := F(j^{1}_{x} \tilde{f}) \) is \(r_0 \) at some point \(x_0 \in \widehat{B} \). The required conclusion is obtained by replacing \(\tilde{f} \) with \(\tilde{f} \) and \(\widehat{B} \) with a sufficiently small open neighborhood of \(x_0 \).

Proof of Proposition 2.3. We may assume \(p = 0 \). Consider the natural action of the group \(\mathbb{G}_0^{-1}(\mathbb{C}^n) \) (consisting of all \((k-1) \)-jets at 0 of local biholomorphic maps of \(\mathbb{C}^n \)) on the space \(J^{1-m}_{0}(\mathbb{C}^n) \) (consisting of all \((k-1) \)-jets at 0 of real \(m \)-dimensional submanifolds of \(\mathbb{C}^n \) passing through 0). The dimensions of the jet spaces can be computed directly:

\[
\dim_{\mathbb{R}} \mathbb{G}_0^{-1}(\mathbb{C}^n) = 2n \left(\binom{k+n-1}{n} - 1 \right), \quad \dim_{\mathbb{R}} J^{1-m}_{0}(\mathbb{C}^n) = (2n-m) \left(\binom{k+m-1}{m} - 1 \right).
\]

Hence the inequality (2.1) is equivalent to

\[
\dim_{\mathbb{R}} J^{1-m}_{0}(\mathbb{C}^n) - \dim_{\mathbb{R}} \mathbb{G}_0^{-1}(\mathbb{C}^n) \geq m.
\]

In particular, for any sufficiently large \(k \), all orbits of \(\mathbb{G}_0^{-1}(\mathbb{C}^n) \) in \(J^{1-m}_{0}(\mathbb{C}^n) \) have their (real) codimension at least \(m \). In the rest of the proof we shall assume that (2.4) is satisfied.

It is easy to see that \(\mathbb{G}_0^{-1}(\mathbb{C}^n) \) is an algebraic group acting rationally on \(J^{1-m}_{0}(\mathbb{C}^n) \) by calculating the group operation and the action in local coordinates. Hence the orbits of
$G_0^{k-1}(\mathbb{C}^n)$ form, on an open dense subset $\Omega \subset J_0^{k-1,m}(\mathbb{C}_R^n)$, a foliation into real submanifolds of a fixed constant codimension $\geq m$. Consider any k-jet $\Lambda_0 \in J_0^{k,m}(\mathbb{C}_R^n)$ represented by the graph of a C^∞-smooth map $\varphi_0: \mathbb{R}^m \to \mathbb{R}^{2n-m}$ with $\varphi(0) = 0$, where we choose a suitable identification of \mathbb{C}_R^n with $\mathbb{R}^m \times \mathbb{R}^{2n-m}$ (after a possible permutation of the real coordinates). Thus $\Lambda_0 = j_0^k((id \times \varphi_0)(\mathbb{R}^m))$. By the density of Ω, we can find another C^∞-smooth map $\varphi: \mathbb{R}^m \to \mathbb{R}^{2n-m}$ with $\varphi(0) = 0$ and $\Theta := j_0^k\varphi$ arbitrarily close to $j_0^k\varphi_0$ such that the $(k-1)$-jet $\Lambda \in J_0^{k-1,m}(\mathbb{C}_R^n)$ at 0 of the graph of φ is contained in Ω. (By this choice, also Λ is arbitrarily close to Λ_0.) We can now find an open neighborhood U of $j_0^k\varphi$ in $J^{k-1}(\mathbb{R}^m, \mathbb{R}^{2n-m})$ and a smooth map $F: U \to \mathbb{R}^m$ of constant rank m and constant on the orbits (recall that m does not exceed the orbit codimension), such that two $(k-1)$-jets $\Lambda_j \in J_j^{k-1,m}(\mathbb{C}_R^n)$, $j = 1, 2$, near Λ_0 (where $(x_j, x'_j) \in \mathbb{R}^m \times \mathbb{R}^{2n-m}$), which are represented by graphs of some smooth maps $\varphi_1, \varphi_2: \mathbb{R}^m \to \mathbb{R}^{2n-m}$, are biholomorphically inequivalent (in the sense of Definition 2.1) whenever $F(j^k_{x_1}\varphi_1) \neq F(j^k_{x_2}\varphi_2)$. Here F can be obtained by taking the first m coordinates in any real coordinate system $(x, y) \in \mathbb{R}^m \times \mathbb{R}^2$, for which the orbits are given by $x = \text{const}$. Then Lemma 2.5 can be applied to U, F, $f := \varphi$ and an arbitrarily small neighborhood of $B \subset \mathbb{R}^m$ of 0. Let \tilde{B} and $\tilde{f}: \tilde{B} \to \mathbb{R}^{2n-m}$ be given by the lemma.

We claim that, for any $x_0 \in \tilde{B}$, the k-jet $\Lambda(x_0) \in J^{k,m}(\mathbb{C}_R^n)$ of the graph of \tilde{f} at $(x_0, \tilde{f}(x_0))$ is totally rigid in the sense of Definition 2.1 (3). Indeed, fix any $x_0 \in \tilde{B}$ and consider any C^k-smooth real m-dimensional submanifold $V \subset \mathbb{C}_R^n$ passing through $(x_0, \tilde{f}(x_0))$ with $j^k_{x_0}\tilde{f}(x_0))(V) = \Lambda(x_0)$. By shrinking V, if necessary, we may assume that V is a graph of a smooth map $g: B(x_0) \to \mathbb{R}^{2n-m}$, where $B(x_0)$ is a suitable open neighborhood of x_0. Then $j^k_{x_0}g = j^k_{x_0}\tilde{f}$ and therefore, the ranks of the maps $x \mapsto F(j^k_xg)$ and $x \mapsto F(j^k_x\tilde{f})$ coincide at $x = x_0$. (Here is the step, where we use the different integers k and $k-1$ for x_0 and points nearby respectively.) By property (3) in Lemma 2.5, the rank of the second map is m and hence, so is the rank of the first map. But the latter fact implies that $F(j^k_{x_1}g) \neq F(j^k_{x_2}g)$ for any $x_1 \neq x_2$ sufficiently close to x_0. In view of the choice of F, it follows that the jets $j^k_{x_1,g(x_1)}(V)$ and $j^k_{x_2,g(x_2)}(V)$ are biholomorphically inequivalent for any such $x_1 \neq x_2$, which is precisely what is needed to show that $\Lambda(x_0)$ is totally rigid. It remains to observe, that any translation of $\Lambda(x_0)$ is also totally rigid, hence we can find totally rigid k-jets also in $J_0^{k,m}(\mathbb{C}_R^n)$ arbitrarily close to the original jet Λ_0. The proof is complete. □

3. Realization of certain groups as CR stability groups

In the sequel we shall use the same letter for a germ and its representative unless there will be a danger of confusion. We begin with a standard lemma, whose proof is given here for the reader’s convenience.
Lemma 3.1. Let \((G_k)_{k \geq 1}\) be an increasing sequence of finite groups of germs of local biholomorphic maps of \(\mathbb{C}^n\) in a neighborhood of a point \(p\) fixing that point. Let \(M\) be a smooth real submanifold of \(\mathbb{C}^n\) passing through \(p\). Let \((D_k)_{k \geq 1}\) be a sequence of domains containing \(p\) and such that, for each \(k\), the germs from \(G_k\) can be represented by biholomorphic self-maps of \(D_k\). Then there exist a sequence of points \(p_k \in M, k \geq 1\), converging to \(p\) and a sequence of mutually disjoint open neighborhoods \(V_k\) of \(p_k\) in \(\mathbb{C}^n\) such that \(\overline{V}_k \subset D_k\) and, if \(g(\overline{V}_k) \cap \overline{V}_l \neq \emptyset\) for some \(k, l\) and \(g \in G_k\), then necessarily \(k = l\) and \(g \equiv \text{id}\).

Note that the existence of domains \(D_k\) easily follows from the finiteness of each \(G_k\). Indeed, if \(\tilde{D}_k\) is any domain where all germs from \(G_k\) biholomorphically extend, it suffices to take \(D_k := \bigcap_{g \in G_k} g(\tilde{D}_k)\).

Proof. We shall construct \(p_k \in M\) and \(V_k \subset \mathbb{C}^n\) inductively. Let \(k = 1\). Since \(G_1\) is finite, the set of points \(x \in D_1\), such that there are two elements \(g_1 \neq g_2 \in G_1\) with \(g_1(x) = g_2(x)\), is a complement of a proper analytic subset. Hence we can choose \(p_1 \in M\) and a neighborhood \(V_1 \subset D_1\) of \(p_1\) in \(\mathbb{C}^n\) with \(p \not\in \overline{V}_1\) such that \(g(\overline{V}_1) \cap \overline{V}_1 \neq \emptyset\) for \(g \in G_1\)

Now suppose that \(p_l\) and \(V_l\) with \(p \not\in \overline{V}_l\) have been chosen for all \(l < k\). Since \(G_k\) is finite, we can choose a neighborhood \(U\) of \(p\) in \(D_k\) such that \(g(U) \cap \overline{V}_l = \emptyset\) for all \(l < k\) and \(g \in G_k\). Using the same argument as before, we can choose \(p_k\) arbitrarily close to \(p\) and \(V_k\) with \(p \not\in \overline{V}_k\) such that \(p_k \in V_k \subset \overline{V}_k \subset U\) and, for any \(g \neq \text{id} \in G_k\), \(g(\overline{V}_k) \cap \overline{V}_k = \emptyset\).

Since \(\overline{V}_k \subset U\) and \(g(U) \cap \overline{V}_l = \emptyset\) for all \(l \leq k\) and \(g \in G_k\), it follows that \(g(\overline{V}_k) \cap \overline{V}_l \neq \emptyset\) can hold for some \(l \leq k\) and \(g \in G_k\) if and only if \(k = l\) and \(g \equiv \text{id}\). It is easy to see that the sequences \((p_k)\) and \((V_k)\) so constructed satisfy the required properties. \(\square\)

Proof of Theorem 1.1. Since the statement is local, we fix an identification \(\mathbb{C}^n \cong \mathbb{R}^m \times \mathbb{R}^{2n-m}\) near \(p\) such that \(M\) is represented by the graph of a smooth map \(\varphi : \mathbb{R}^m \to \mathbb{R}^{2n-m}\) with \(\|\varphi\|_{C^1}\) sufficiently small. We shall write \(B_r(a)\) for the open ball with center \(a\) and radius \(r\) with respect to the product metric of the Euclidean metrics of \(\mathbb{R}^m\) and \(\mathbb{R}^{2n-m}\). With this choice of the metric on \(\mathbb{R}^m \times \mathbb{R}^{2n-m}\) and \(\|\varphi\|_{C^1}\) sufficiently small, we have the property that, for any \(a \in M\), the intersection \(B_r(a) \cap M\) coincides with the graph of \(\varphi\) over the projection of \(B_r(a)\) to \(\mathbb{R}^m\) (which is an Euclidean ball in \(\mathbb{R}^m\)). In the course of the proof we shall consider small perturbations of \(M\) obtained as graphs of small perturbations of \(\varphi\). We shall always assume that the \(C^1\) norms of these perturbations are still small, so that the mentioned relation between ball intersections with their graphs and graphs over balls still holds.

By the assumption, \(G = \bigcup_k G_k\), where \(G_k, k \geq 1\), is an increasing sequence of finite groups of local biholomorphic maps of \(\mathbb{C}^n\) in a neighborhood of \(p\), fixing \(p\) and preserving the germ \((M, p)\). As indicated above, we can choose a decreasing sequence of open neighborhoods \(D_k\) of \(p\) in the unit ball \(B_1(p)\) in \(\mathbb{C}^n\) centered at \(p\), such that, for each \(k\), all
of Definition 2.1). Then it follows from (2.3) that, for each k, D_k, V_k inductively such that, in addition,

$$\max \left(\sup_{z \in D_{k+1}, g \in G_k} \|g'(z)\|, \sup_{z \in D_{k}, g \in G_k} \|g'(z)\| \right) \frac{\sup_{z \in V_{k+1}} |z - p|}{\inf_{z \in V_k} |z - p|} \to 0, \quad k \to \infty, \quad (3.1)$$

where g' is the Jacobian matrix of g.

For an l-jet $\Lambda \in J_{x}^{l,m}(\mathbb{C}_{\mathbb{R}}^n)$, we denote by $\text{Orb}(\Lambda) \subset J_{y}^{l,m}(\mathbb{C}_{\mathbb{R}}^n)$ the set of all l-jets $\Lambda \in J_{y}^{l,m}(\mathbb{C}_{\mathbb{R}}^n)$ for all $y \in \mathbb{C}_{\mathbb{R}}^n$ that are biholomorphically equivalent to Λ (in the sense of Definition 2.1). Then it follows from (2.3) that, for l sufficiently large, the subset $\bigcup_{z \in M \cap D_1} \text{Orb}(j^l_x M) \subset J_{y}^{l,m}(\mathbb{C}_{\mathbb{R}}^n)$ has Lebesgue measure zero and therefore its complement is dense in $J_{y}^{l,m}(\mathbb{C}_{\mathbb{R}}^n)$. The same argument obviously applies to any other real submanifold of \mathbb{C}^n of the same dimension as M. We shall use this property to choose jets that are not in the certain unions of orbits. We shall consider l sufficiently large so that this choice is always possible.

We next consider a sequence ε_k, $0 < \varepsilon_k < 1$, converging to 0 and such that

$$\varepsilon_k \left(\sup_{x \in D_k, g \in G_k} \|g'(x)\| \right) \to 0, \quad k \to \infty. \quad (3.2)$$

Then, as a consequence of Lemma 2.4 and Proposition 2.3, we can find a sequence of neighborhoods U_k of p_k in V_k with $\overline{U_k} \subset V_k$ and a sequence of graphs N_k of smooth maps $\varphi_k: \mathbb{R}^m \to \mathbb{R}^{2n-m}$ with

$$\|\varphi_k - \varphi\|_{C^k} < \varepsilon_k, \quad N_k \setminus \overline{U_k} = M \setminus \overline{U_k}, \quad (3.3)$$

and such that the following holds. There exist points $q_k \in N_k$ and real numbers $\delta_k > 0$ such that, for each k, the $2\delta_k$-neighborhood of q_k in N_k, $B_{2\delta_k}(q_k) \cap N_k$, is contained in U_k, totally rigid (in the sense of Definition 2.1) and

$$j^l_x N_k \notin \bigcup_{x \in M \cap D_1} \text{Orb}(j^l_x M). \quad (3.4)$$

As the next step, we define $X_k \subset N_k \cap U_k$ to be the subset of all points $y \neq q_k$ for which there exists a CR-diffeomorphism from $B_{2\delta_k}(y) \cap N_k$ into $B_{2\delta_k}(q_k) \cap N_k$, sending y into q_k. Since the CR-manifold $B_{2\delta_k}(q_k) \cap N_k$ is totally rigid by our construction, it is clear that for any $y_1 \neq y_2 \in X_k$, the neighborhood $B_{2\delta_k}(y_1) \cap N_k$ cannot contain y_2. Hence the neighborhoods $B_{2\delta_k}(y) \cap N_k$, $y \in X_k$, do not intersect and so X_k must be a finite set. It is also clear that $X_k \cap B_{2\delta_k}(q_k) \cap N_k = \emptyset$ again by the total rigidity of $B_{2\delta_k}(q_k) \cap N_k$. Furthermore we must have $X_k \subset N_k \cap U_k$ in view of (3.3) and (3.4).

We next choose a sequence η_k, $0 < \eta_k < \varepsilon_k \delta_k$ and apply again Lemma 2.4 to obtain a sequence of graphs M_k of smooth maps $\psi_k: \mathbb{R}^m \to \mathbb{R}^{2n-m}$ with

$$\|\psi_k - \varphi_k\|_{C^k} < \varepsilon_k \quad (3.5)$$
and finite subsets $\tilde{X}_k \subset M_k$ with
\[j'_y M_k \notin \bigcup_{x \in N_k \cap D_1} \text{Orb}(j'_x N_k) \quad \forall y \in \tilde{X}_k, \tag{3.6} \]
and such that, for $W_k := \bigcup_{g \in \tilde{X}_k} B_{\eta_k}(y),$
\[X_k \cap M_k = \emptyset, \quad M_k \setminus W_k = N_k \setminus \overline{W_k}, \quad \overline{W_k} \cap B_{\delta_k}(g_k) = \emptyset. \tag{3.7} \]
We may in addition assume that η_k is sufficiently small so that $\overline{W_k} \subset V_k.$

Finally, we define the new generic submanifold $\tilde{M} \subset \mathbb{C}^n$ by replacing $g(M \cap V_k)$ with $g(M_k \cap V_k)$ for every sufficiently large k and every $g \in G_k,$ i.e.
\[\tilde{M} := \left(M \setminus \bigcup_{k \geq k_0, g \in G_k} g(M \cap V_k) \right) \bigcup \left(\bigcup_{k \geq k_0, g \in G_k} g(M_k \cap V_k) \right), \tag{3.8} \]
where k_0 is sufficiently large. (Note that all neighborhoods $g(V_k), g \in G_k,$ $k \geq k_0,$ are disjoint together with their closures since they are given by Lemma 3.1.) Then \tilde{M} is a smooth submanifold through p and, if ε_k have been chosen sufficiently rapidly converging to 0, \tilde{M} is tangent to M of infinite order at p in view of (3.3) and (3.5). Consequently \tilde{M} is also of finite type at $p.$ Furthermore, the germ (\tilde{M}, p) is clearly invariant under the action of $G,$ i.e. the group $\text{Aut}_{\text{CR}}(\tilde{M}, p)$ of germs at p of all local CR-automorphisms of M fixing p contains $G.$

We now claim that $\text{Aut}_{\text{CR}}(\tilde{M}, p) = G.$ Indeed, fix any $f \in \text{Aut}_{\text{CR}}(\tilde{M}, p)$ and its representative defined in some neighborhood of p in $\tilde{M},$ denoted by the same letter. Then for k sufficiently large, f is defined in $D_k \subset \tilde{M}$ with $f(D_k \cap \tilde{M}) \subset D_1.$ By the construction, each $g_k \in N_k \cap U_k$ is not contained in $W_k,$ hence it is in $M_k \cap V_k$ and therefore in \tilde{M} so that we can evaluate $f(g_k).$ Then (3.4) implies that $f(g_k) \notin \tilde{M}$ and hence $f(g_k) \in g(U_s) \subset g(V_s)$ for some s and some $g \in G_s.$ Thus we have the estimates
\[(\sup_{D_s} \|(g^{-1})'\|)^{-1} \frac{\inf_{z \in V_s} |z - p|}{\sup_{z \in V_s} |z - p|} \leq \frac{|f(g_k) - p|}{|q_k - p|} \leq \sup_{D_s} \|g'\| \frac{\inf_{z \in V_k} |z - p|}{\sup_{z \in V_k} |z - p|}. \tag{3.9} \]
On the other hand, since f is a local diffeomorphism of \tilde{M} fixing $p,$ there exist constants $0 < c < C$ such that
\[c \leq \frac{|f(z) - p|}{|z - p|} \leq C, \quad c \leq \|f'(z)\| \leq C \tag{3.10} \]
for $z \neq p \in \tilde{M}$ sufficiently close to $p.$ Then if k is sufficiently large, we must have $s = k$ in view of (3.1). Hence $f(g_k) \in g_k(U_k)$ for suitable $g_k \in G_k.$ Setting $f_k := g_k^{-1} \circ f \in \text{Aut}_{\text{CR}}(M, p),$ we have $f_k(g_k) \in U_k \cap \tilde{M}.$ In view of (3.8), this means $f_k(g_k) \in U_k \cap M_k.$

We now claim that, for k sufficiently large, we must have $B_{\varepsilon_k \delta_k}(f_k(g_k)) \cap \tilde{M} \subset N_k.$ Indeed, otherwise, in view of (3.7), we would have $W_k \cap B_{\varepsilon_k \delta_k}(f_k(g_k)) \neq \emptyset$ and, since $\eta_k < \varepsilon_k \delta_k,$ it would imply $\tilde{X}_k \cap B_{2\varepsilon_k \delta_k}(f_k(g_k)) \neq \emptyset.$ However, in view of (3.2) and (3.10),
this would mean that, for \(k \) sufficiently large and some point \(y \in \tilde{X}_k \), the inclusion \(f_k^{-1}(y) \subset B_{\delta_k}(q_k) \cap \tilde{M} \) would hold. By our construction, \(B_{\delta_k}(q_k) \cap \tilde{M} \subset N_k \) and hence we would have a contradiction with (3.6). Hence we have \(B_{\varepsilon_k \delta_k}(f_k(q_k)) \cap \tilde{M} \subset N_k \) as claimed. Thus \(B_{\varepsilon_k \delta_k}(f_k(q_k)) \cap \tilde{M} = B_{\varepsilon_k \delta_k}(f_k(q_k)) \cap N_k \). Again, using (3.2) and (3.10), we conclude that, for \(k \) sufficiently large, \(f_k^{-1} \) sends \(B_{\varepsilon_k \delta_k}(f_k(q_k)) \cap N_k \) into \(B_{\delta_k}(q_k) \cap N_k \). By our construction of the set \(X_k \subset N_k \), the latter conclusion means either \(f_k(q_k) \in X_k \) or \(f_k(q_k) = q_k \). The first case is impossible in view of the first condition in (3.7). Hence we have \(f_k(q_k) = q_k \) and, since a neighborhood of \(q_k \) in \(M_k \) is totally rigid, this means \(f_k \equiv \text{id} \) in a neighborhood of \(q_k \). Since \((M, p)\) is of finite type, we have \(f_k \equiv \text{id} \) as germs at \(p \), and hence \(f \equiv g_k \in G \) implying the desired conclusion. \(\square \)

References

Korea Institute for Advanced Study, Cheongnyangni 2-dong Dongdaemun-gu Seoul 130-722, Korea

E-mail address: sykim87@kias.re.kr

School of Mathematics, Trinity College Dublin, Dublin 2, Ireland

E-mail address: zaitsev@maths.tcd.ie