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Abstract. For all integers d f k f 1 and n suitably large we give explicit ex-
amples of connected compact real-analytic submanifolds M HCn with the following
properties: (1) Every non-trivial covering space of M is non-embeddable in the sense
that it is not CR-isomorphic (with respect to its canonical CR-structure) to a CR-
submanifold of CN for any N whatsoever. (2) M has fundamental group p1ðMÞGZk

2 ,
where Z2 is the group of order two. (3) The covering spaces of M, indexed by the
subgroups of p1ðMÞ, are pairwise CR-non-isomorphic. (4) M is a strongly pseudo-
convex Cauchy-Riemann submanifold with CR-codimensionf d. (5) M is homoge-
neous with respect to a compact linear subgroup G HGLðn;CÞ. (6) M is not locally
a direct product of CR-manifolds of lower dimensions.

1. Introduction

It is well-known that every real-analytic CR-manifold is locally CR-embeddable into
Cn for some n, see for instance [2]. In contrast to this, the question about global embedd-
ability into a suitable Cn has a negative answer in general. One can obtain fairly general
classes of globally non-embeddable CR-manifolds by requiring a certain pseudoconcavity

property. This roughly means that at every point the Levi form spans all directions. Fur-
ther examples occur more generally among CR-manifolds satisfying the so-called strong

maximum principle for continuous CR-functions, see [7], [8], [14], [12]. On every compact
connected CR-manifold of this type all CR-functions are constant, thus implying non-
embeddability. Here and throughout the paper we call a CR-manifold M non-embeddable

if it is not isomorphic to a CR-submanifold of any Cn—note that every real-analytic CR-
manifold is always embeddable into some complex manifold [1]. Because of the above
we are only interested in non-embeddable CR-manifolds with ‘many’ non-constant CR-
functions.

In case the CR-manifold M is strongly pseudoconvex, the maximum principle does
not hold in general. Here strongly pseudoconvex means in case M is of hypersurface type
that the Levi form is definite at every point of M and, in the general case, that the Levi form
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at every point is positively definite with respect to some conormal (see e.g. [18], [10], [17]).
The first non-embeddable example of this type (attributed to Andreotti in [16], see also [3])
is compact and has dimension 3. Later, other interesting 3-dimensional non-embeddable
examples have been discovered (see e.g. [9]), whereas in dimension > 3 compact strongly
pseudoconvex CR-manifolds of hypersurface type are necessarily embeddable due to [4] (see
also [16] for the real-analytic case). To the authors’ knowledge, all known non-embeddable
strongly pseudoconvex CR-manifolds so far have been essentially of hypersurface type. By
‘‘essentially’’ here we mean to exclude the trivial way of producing further examples by
taking direct products of two CR-manifolds, one of which is non-embeddable.

In this paper we construct multi-parameter series of explicit examples of com-
pact non-embeddable real-analytic strongly pseudoconvex CR-manifolds of arbitrary CR-
codimension that are not locally products of lower-dimensional CR-manifolds. All these
examples are homogeneous with respect to a compact Lie group and have many non-
constant CR-functions in the sense that they are finite covers of embeddable CR-manifolds.

2. Description of the examples

Let G be a Lie group. A linear G-space is a complex linear space E of finite di-
mension together with a continuous representation F : G ! GLðEÞ—instead of FðgÞðaÞ
for g A G and a A E we simply write g � a. In case G is compact, every orbit G � a, a A E, is
a real-analytic CR-submanifold of E, on which G acts transitively and analytically by CR-
transformations.

For our examples we fix an integer pf 2 and let E be the linear space of all sym-
metric complex p � p matrices, that is, E ¼ fz A C p�p : z 0 ¼ zg, where z 0 denotes the trans-
pose of the matrix z. Then E is a linear G-space for G :¼ SUðpÞ if we put g � z :¼ gzg 0 for
all g A G and z A E. For every a A E the corresponding orbit has the following explicit de-
scription:

G � a ¼ fz A E : detðzÞ ¼ detðaÞ and mjðzÞ ¼ mjðaÞ for all j < pg;ð2:1Þ

where mjðzÞ is the sum over all j � j-diagonal minors of the matrix zz� A C p�p, see [15],
also for the following. Consider the ðp � 1Þ-dimensional simplex

D :¼ fx A Rp : 1 ¼ x1 f � � �f xp f 0gð2:2Þ

and identify every a A D in the canonical way with the corresponding diagonal matrix in E

(having diagonal entries aii ¼ ai for 1e ie p). Then for every 03 e A E the orbit G � e is
CR-isomorphic to some orbit G � a, a A D, via a suitable homothety z 7! az, a A C�. Let

Dþ :¼ fx A D : xp > 0g and D0 :¼ fx A D : xp ¼ 0gð2:3Þ

be the subsets of invertible and non-invertible matrices in D respectively. Then

ðx1; x2; . . . ; xpÞ 7!
xp

xp

;
xp

xp�1
; . . . ;

xp

x1

� �
ð2:4Þ

defines a homeomorphism y : Dþ ! Dþ of period 2. In case p ¼ 2 the transformation y is
the identity on Dþ, in all other cases FixðyÞ is a proper (but non-empty) subset of Dþ.
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The CR-equivalence problem for G-orbits in E (actually for a much bigger class of
examples) has been solved in [15], section 13: The orbits G � a and G � b for a3 b from D are

CR-isomorphic if and only if a A Dþ and b ¼ yðaÞ. Notice that for every a A Dþ, b :¼ yðaÞ
and a :¼ ap > 0

ya : G � a ! G � b; z 7! az�1;ð2:5Þ

defines a CR-di¤eomorphism between the two orbits.

For the unit matrix 1 ¼ ð1; . . . ; 1Þ A D, the orbit G � 1 ¼ SUðpÞXE is totally real in
E. For every other a A D, the orbit G � a is a minimal, strongly pseudoconvex CR-manifold,
and from the explicit description of the Levi form at a, compare [15], section 9, it can be
seen that G � a locally is not the direct product of CR-manifolds of lower dimensions.

For every a A D let k ¼ kðaÞ be the maximal number of pairwise di¤erent coordi-
nates of a. Then the orbit M :¼ G � a has CR-codimensionf ðk � 1Þ and fundamental
group Zk�1

2 , where Z2 is the group of order 2, see Sect. 4. The universal covering ~MM of
M is a CR-manifold in a natural way. We show that ~MM is not separable by continuous
CR-functions in general, thus giving an example of a non-embeddable strongly pseudo-
convex CR-manifold. To be more specific, we show, for instance, for all a A Dþ with
yðaÞ3 a: Every non-trivial covering of the orbit M :¼ G � a is not separable by continuous

CR-functions. Furthermore, the covering spaces of M are pairwise non-isomorphic as CR-
manifolds. Recall that the coverings of M are in 1 : 1-correspondence with the subgroups
of the homotopy group p1ðM; aÞFZk�1

2 and that the number Nn of subgroups in Zn
2

satisfies the recursion formula: N0 ¼ 1, N1 ¼ 2 and Nnþ1 ¼ 2Nn þ ð2n � 1ÞNn�1.

Since G ¼ SUðpÞ is connected and simply-connected, the G-action on every
M ¼ G � a lifts to a G-action on the universal covering ~MM of M. In case kðaÞ ¼ p, the
universal covering ~MM is isomorphic as homogeneous G-space to the group G acting on
itself by left translations. In particular, we can construct from this a ðp � 1Þ-parameter
family of pairwise CR-inequivalent strongly pseudoconvex leftinvariant CR-structures on
SUðpÞ (see [15], section 13), each of which is non-embeddable.

We would like to mention that the classical tools used to show non-embeddability
(see [16], [9]) are not available in higher codimension. In particular, a submanifold of
higher codimension does not bound any domain and hence the question of finding a suit-
able domain of extension for CR-functions is more delicate. Here we use our results in [15]
describing such regions of holomorphic extension. Furthermore, strong pseudoconvexity of
the initial CR-manifold cannot be used to conclude that the ramification locus in such a
region is empty. Our arguments here are based on the Peter-Weyl Theorem.

3. Some consequences of the Peter-Weyl Theorem

Let G be a compact Lie group and let M be an analytic CR-manifold on which G acts
transitively and analytically by CR-transformations.

3.1. Proposition. The following conditions are equivalent:

Kaup and Zaitsev, Non-embeddable CR-manifolds 3



(i) M is embeddable.

(ii) The continuous CR-functions separate points on M.

(iii) There exists a linear G-space V together with a G-equivariant CR-isomorphism

from M onto some orbit G � v in V.

Proof. (i) ) (ii) and (iii) ) (i) are trivial. Suppose that (ii) holds and fix a point
a A M. Denote by CCRðMÞ the complex Banach algebra of all continuous CR-functions on
M. Then G acts by linear isometries on CCRðMÞ if we associate to every g A G the linear
operator f 7! f � g�1. Denote by RHCCRðMÞ the linear subspace of all representative
functions on G, that is, of all f A CCRðMÞ that are contained in some G-invariant linear
subspace of finite dimension in CCRðMÞ. By the Peter-Weyl Theorem, compare for instance
[5], p. 141, R is a dense subalgebra of CCRðMÞ. Define inductively finite chains

f0g ¼ V0 HV1 H � � �HVk and M ¼ M0 IM1 I � � �IMk ¼ fag

in the following way, where every Vj is a G-invariant linear subspace of finite dimension in
R and Mj ¼ fz A M : f ðzÞ ¼ f ðaÞ for all f A Vjg: Assume that Vj with Mj 3 fag is already
defined. Let X be the subspace of all functions in R that are constant on Mj. By (i), X is
not dense in CCRðMÞ and hence also is not dense in R. Therefore there exists a function
f A RnX . Let Vjþ1 be the smallest G-invariant linear subspace of R that contains Vj and f .
Then Vjþ1 has finite dimension and Mjþ1 3Mj. Since representative functions are known
to be real-analytic and every properly descending chain of closed real-analytic subsets in
M is finite, the induction stops after a finite number of steps k. The dual V :¼ LðVk;CÞ
of Vk is a linear G-space with respect to ðg � lÞð f Þ :¼ lð f � gÞ for all g A G, f A W , and
eðzÞð f Þ :¼ f ðzÞ defines a real-analytic CR-map e : M ! V . Since e is also G-equivariant we
get a CR-isomorphism from M onto the orbit G � v for v :¼ eðaÞ, proving (iii). r

In the following let M be a connected CR-manifold and let CCRðMÞ be the algebra of
all continuous CR-functions on M. We always assume that CCRðMÞ separates the points
of M and that G is a compact connected and simply-connected Lie group acting transi-
tively and analytically by CR-transformations on M. This implies that G is semi-simple
and that M has finite fundamental group. In case t : N ! M is a covering map with a
Hausdor¤ topological space N there is a unique structure of CR-manifold on N such that t
is a local CR-isomorphism and we ask: When do the continuous CR-functions on N separate

points? or, what is equivalent in view of Proposition 3.1: When is N embeddable? For this
consider on N the equivalence relation given by identifying points that cannot be separated
by continuous CR-functions and denote by N the corresponding quotient space. Since M is
separable by CR-functions, the covering map t : N ! M factors over the canonical pro-
jection N ! N and a mapping t : N ! M. The action of G on M lifts to an action on
N. From this it is easily derived that N is a (Hausdor¤ ) CR-manifold, separable by CR-
functions, and that both mappings are covering maps themselves. In case N is the universal
covering of M we write ~MM instead of N and M̂M instead of N. It is clear that every non-
trivial covering of M̂M gives an example of a non-embeddable CR-manifold.

3.2. Proposition. Let V be a linear G-space for a compact connected simply-connected

Lie group G, let M be a G-orbit in V and let t : N ! M be a covering map with N a connected

Hausdor¤ space. Suppose there exists a locally-closed complex submanifold Y of V with the

following properties:
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(i) Every continuous CR-function on M has a unique continuous extension to M WY

which is holomorphic on Y.

(ii) For every y AY , the orbit G � y is a Zariski-dense subset of Y (i.e. A ¼ Y is the

only complex-analytic subset of Y with G � yHA).

(iii) M WY is simply-connected.

Then every continuous CR-function on N is the pullback of a function from M, that is,
N ¼ M.

Proposition 3.2 is a special case of the following more general principle.

3.3. Proposition. Let G;V , t : N ! M and Y be as in Proposition 3.2 except that

(iii) not necessarily holds. Suppose that a; b A N are points that can be connected by a con-

tinuous path g in N whose projection to M is a null-homotopic loop in M WY . Then a; b
cannot be separated by continuous CR-functions on N.

Proof. For Y ¼ j the statement obviously is true, so we assume Y 3j in the fol-
lowing. The action of G on M lifts in a unique way to a transitive action on the covering
space N of M. By Proposition 3.1, N can be realized as a G-orbit in some linear G-space
W . Denote by d f 1 the degree of the covering map t : N ! M (which is finite because
the compact group G acts transitively on N ) and let X :¼ W d=Sd be the d th symmetric
power of W , where Sd is the symmetric group in d elements. G acts in a canonical way
by biholomorphic transformations on the complex space X and the canonical projection
p : W d ! X is holomorphic. Denote by BHX the ramification locus of this projection.
Then z 7! t�1ðzÞ induces a continuous G-equivariant CR-map c : M ! XnB. Since X can
be realized as an analytic subset of some Cn we conclude with (i) that c extends to a con-
tinuous G-equivariant map M WY ! X whose restriction to Y is holomorphic. The pre-
image c�1ðBÞ is a proper G-invariant analytic subset of Y and hence empty because of (ii).
Therefore the covering t : N ! M extends to a (non-ramified) covering h : Z ! M WY

with Z HW being a suitable subset with NHZ, in such a way that cðxÞ ¼ h�1ðxÞ holds for
all x A M WY . Since, by the assumptions, the projection of the path g is a null-homotopic
loop in Y WM, the projections of the two endpoints a and b to N must coincide. The re-
quired conclusion now follows directly from the construction of N. r

In Proposition 3.3 the degree of the covering t : N ! M is bounded by the order of
the pointed fundamental group p1ðM WY ; cÞ, for every c A M. Indeed, as a consequence of
Proposition 3.3 for every a A N and c :¼ tðaÞ the kernel of the canonical homomorphism
p1ðM; cÞ ! p1ðM WY ; cÞ contains the subgroup p1ðN; aÞ of p1ðM; cÞ.

4. Orbits of invertible matrices

We start by describing the examples of Sect. 2 in more detail: For fixed integer pf 2
and G :¼ SUðpÞ, we again consider E :¼ fz A C p�p : z ¼ z 0g as linear G-space with respect
to g � z :¼ gzg 0 for all g A G. For every z A E denote by

s1ðzÞf s2ðzÞf � � �f spðzÞf 0
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the eigenvalues of the non-negative hermitian matrix
ffiffiffiffiffiffiffi
zz�

p
, each counted according

to its multiplicity. Every sjðzÞ is called the j th singular value of z. The function tuple
s :¼ ðs1; s2; . . . ; spÞ defines a continuous G-invariant mapping s : E ! Rp and

G � a ¼ fz A E : detðzÞ ¼ detðaÞ and sðzÞ ¼ sðaÞg

for all a A E, compare also (2.1).

Now fix an element a3 0 in E for the sequel and put M :¼ G � a. Denote, as before,
by k :¼ kðaÞ the maximal number of pairwise di¤erent singular values of a, that is,

fs1ðaÞ; s2ðaÞ; . . . ; spðaÞg ¼ fl1; l2; . . . ; lkgð4:1Þ

with l1 > l2 > � � � > lk f 0. For every j e k , denote by rj f 1 the multiplicity of the sin-
gular value lj for a.

The connected and simply-connected Lie group G ¼ SUðpÞ acts transitively on the
CR-manifold M by CR-transformations. To apply the results from Sect. 3 we need suitable
non-trivial coverings of M. We claim that the fundamental group of M is Zk�1

2 , where Z2 is
the group with 2 elements. Indeed, if we assume a A D without loss of generality, it can be
shown that the isotropy subgroup K :¼ fg A G : g � a ¼ ag is the subgroup

S
�
Oðr1Þ �Oðr2Þ � � � � �OðrkÞ

�
HSUðpÞ;ð4:2Þ

where SðHÞ :¼ fg A H : detðhÞ ¼ 1g for every subgroup H HGLðp;CÞ and OðrÞHGLðr;RÞ
for every integer rf 1 is the orthogonal subgroup. The connected identity component K 0

of K is SOðr1Þ � SOðr2Þ � � � � � SOðrkÞ, that is, p1ðMÞGK=K 0 is isomorphic to Zk�1
2 .

Recall that we write M̂M for the space of equivalence classes of points in the universal
covering of M that are not separable by continuous CR-functions. Our first main result
now is:

4.3. Theorem. In case a A E is an invertible matrix, every continuous CR-function

on the universal covering ~MM of the orbit M ¼ GðaÞ is the pullback of some CR-function on

M, that is, M̂M ¼ M. In particular, every non-trivial covering of M is a non-embeddable CR-
manifold.

Proof. S :¼ fz A E : detðzÞ ¼ detðaÞg is a G-invariant complex submanifold of E

containing the orbit M. For every j e p consider the real valued function mj :¼ s1s2 � � � sj

on E. Then

Y :¼ fz A S : mjðzÞ < mjðaÞ for all j < pg

is a (possibly empty) G-invariant domain in S satisfying condition 3.2(i) as a consequence
of [15], Theorem 12.1. But also 3.2(ii) holds since, for every y A S, the orbit G � y is a ge-
neric CR-submanifold of S, compare [15], section 8. Because of Proposition 3.2 therefore
we only have to verify 3.2(iii), that is, that M WY is simply-connected. But this follows
with the odd functional calculus on E that we briefly recall here (compare the discus-
sion between 10.7 and 10.8 in [15]): Every odd function f : R ! R induces a G-equivariant
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mapping f : E ! E with the property that for every real diagonal matrix d ¼ ðdijÞ A E the
image f ðd Þ is the real diagonal matrix

�
f ðdijÞ

�
in E. Without loss of generality we may

assume that a is the real diagonal matrix with diagonal entries ai ¼ siðaÞ. Let c A E be
the unit matrix multiplied with the real factor b :¼ mpðaÞ

1=p > 0. The orbit G � c is simply-
connected and contained in M WY . For every 0e se 1 let fs be the odd function on R

satisfying fsðtÞ ¼ b1�sts for all t > 0. Then the family of all fs induces a continuous re-
traction from M WY onto the simply-connected orbit G � c, i.e. 3.2(iii) holds and the claim
follows from Proposition 3.2. r

4.4. Corollary. For all a; b A E with a invertible, the following conditions are equi-

valent:

(i) The universal covering spaces of the orbits G � a and G � b are CR-isomorphic.

(ii) There exist coverings U ! G � a, V ! G � b such that U ;V are CR-isomorphic.

(iii) The orbits G � a and G � b are CR-isomorphic.

Proof. Every CR-isomorphism U ! V maps maximal sets that cannot be sepa-
rated by continuous CR-functions, to sets with the same property and hence induces a CR-
isomorphism of the corresponding orbits as a consequence of 4.3. r

Let as before k ¼ kðaÞ be the maximal number of di¤erent singular values of
a A E. Then the orbit M ¼ G � a has pointed fundamental group p1ðM; aÞFK=K 0 FZk�1

2 .
Since the coverings of M are in 1 :1-correspondence to the subgroups of p1ðM; aÞ we

count, for instance, 2k�1 � 1 di¤erent coverings of degree 2 and
1

3
ð2k�1 � 1Þð2k�2 � 1Þ

di¤erent coverings of degree 4 for M. The question arises, which of these covering spaces
are isomorphic as CR-manifolds. For this recall from (2.5) the definition of the involution
y : Dþ ! Dþ and of the CR-di¤eomorphism ya : G � a ! G �

�
yðaÞ

�
. For every a A FixðyÞ

the group Ya :¼ fid; yag of order e 2 acts in a natural way on the fundamental group
p1ðM; aÞ and hence on the set of coverings of M. Since for every invertible a A E we may
assume a A Dþ without loss of generality, the following proposition together with 4.4 solves
the CR-equivalence problem for covering spaces of invertible G-orbits in E.

4.5. Proposition. For every a A Dþ with a3 1 we have for the orbit M ¼ G � a:

(i) In case a A FixðyÞ two covering spaces of M are CR-equivalent if and only if they

are equivalent under the action of the group Ya.

(ii) In case a B FixðyÞ the covering spaces of M are pairwise CR-inequivalent.

Proof. Let Gj H p1ðM; aÞ be subgroups with associated coverings tj : Nj ! M for
j ¼ 1; 2 and assume that x : N1 ! N2 is a CR-homeomorphism. Then x lifts to a transfor-
mation ~xx A AutCRð ~MMÞ of the universal covering ~MM of M. As a consequence of 4.4, ~xx is the
lifting of a transformation in AutCRðMÞ. In case a A FixðyÞ the group AutCRðMÞ is gen-
erated by its connected identity component and ya [15], Corollary 13.6, proving (i). Again
by [15], Corollary 13.6, AutCRðMÞ is connected if a A Dþ is not in Fix½y�, proving (ii). r
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5. Orbits of non-invertible matrices

Having settled the invertible matrix case in the preceding section let us assume for the
rest of this section that a3 0 in E is not invertible and hence has rank r with 0 < r < p.
Denote by Ek HE for every 0e k e p the (locally closed) complex submanifold consisting
of all matrices with rank k in E. Then the orbit

M :¼ G � a ¼ fz A Er : sjðzÞ ¼ sjðaÞ for all j e rg

is a generic and minimal CR-submanifold of Er. In contrast to the case of invertible ma-
trices, M is circular, i.e., invariant under all transformations z 7! eitz, t A R.

The group GLðp;CÞ acts by matrix multiplication from the left on C p�r. Also E is a
linear GLðp;CÞ-space with respect to g � z ¼ gzg 0 for all g A GLðp;CÞ, and the holomorphic
mapping

j : C p�r ! E; jðzÞ :¼ zz 0;ð5:1Þ

is GLðp;CÞ-equivariant and has the closure

R :¼ Er WEr�1 W � � �WE0 of Er in E

as image. The complex orthogonal group Oðr;CÞ acts on C p�r from the right and the
categorical quotient C p�r==Oðr;CÞ is a normal complex space. The mapping j is Oðr;CÞ-
invariant and induces a biholomorphic map from C p�r==Oðr;CÞ onto the complex analytic
cone R ¼ Er in E, compare e.g. [11], p. 182.

Without loss of generality we may assume a A D0, see (2.3). Define
l1 > l2 > � � � > lk ¼ 0 with multiplicities r1; . . . ; rk as in (4.1) and identify M as homoge-
neous space with G=K , where the isotropy subgroup K at a is given by (4.2). The subgroup

K̂K :¼ S
�
Oðr1Þ �Oðr2Þ � � � � �Oðrk�1Þ

�
� SOðrkÞHK

has index 2 in K. Therefore, the homogeneous space G=K̂K is a 2-sheeted covering of
M ¼ G=K.

Recall from Sect. 3 the definition of the covering M̂M ! M, which in a way is maximal
with respect to the property that the covering space is embeddable. Our second main result
now states:

5.2. Theorem. For every orbit M ¼ G � a with a3 0 non-invertible in E, the covering

M̂M ! M is 2 : 1 and CR-isomorphic to G=K̂K ! G=K.

Proof. In a first step we show that M admits a 2-sheeted covering N ! M with N

an embeddable (connected) CR-manifold. For r ¼ rankðaÞ and j as in (5.1) fix a matrix
c A j�1ðaÞ and consider the pre-image

S :¼ j�1ðMÞ ¼ fucv : u A SUðpÞ; v A Oðr;CÞg;ð5:3Þ
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which is a generic CR-submanifold of C p�r. We claim that S is connected. Since
SUðpÞ and SOðr;CÞ are connected, it is enough to show cv A S for some v A Oðr;CÞ with
detðvÞ ¼ �1. Without loss of generality we may assume that the matrix c A C p�r is diago-
nal, that is, cjk ¼ 0 if j 3 k. But then, if we also choose v to be diagonal, there is a matrix

w A Oðp � rÞ with u :¼ v 0

0 w

� �
A SUðpÞ, and cv ¼ uc A S proves the claim. The di¤eren-

tial of j : S ! M at c A S induces a complex linear surjection HcS ! HaM of the corre-
sponding holomorphic tangent spaces. Consequently, M can be identified as CR-manifold
with S=Oðr;CÞ, and S=SOðr;CÞ is a 2-sheeted covering of M. Since every r � r-minor on
Cr�p is an SOðr;CÞ-invariant holomorphic function that is not Oðr;CÞ-invariant, the quo-
tient CR-manifold S=SOðr;CÞ is separable by CR-functions and hence embeddable by
Proposition 3.1.

In a next step we show that every covering N ! M with N embeddable has
degreee 2. For this consider the G-invariant domain

Y :¼ fz A Er : sjðzÞ < sjðaÞ for all j e rg

in the complex submanifold Er HE. Then property 3.2(i) is satisfied as a consequence
of [15], Theorem 12.1. But also 3.2(ii) holds since, for every y AY , the orbit G � y is a
generic CR-submanifold of Y , compare [15], section 8. Let e A Er be a matrix with
s1ðeÞ ¼ srðeÞ < srðaÞ. Then the orbit G � e has fundamental group Z2 and is contained in
M WY . As in the proof of Theorem 3.2 we conclude that G � e is a retract of M WY .
Proposition 3.2 now can be applied and gives that the covering N ! M has degreee 2.
Both steps together complete the proof. r

As a consequence of Proposition 3.1 the 2-sheeted covering space M̂M of M can be
realized as a G-orbit in some linear G-space. In the following we give such a realization.
For this identify C p ¼ C p�1 and consider the r-fold exterior product F :¼ LrðC pÞ. Then F

is also a linear GLðp;CÞ-space if we put g � o :¼ LrðgÞðoÞ for all g A GLðp;CÞ and o A F .
In analogy to (5.1) consider the GLðp;CÞ-equivariant holomorphic mapping

c : C p�r ! F ; cðzÞ :¼ z15z25 � � �5zr;ð5:4Þ

where z1; . . . ; zr A C p are the column vectors of the matrix z ¼ ðz1; . . . ; zrÞ. It is easily
seen that cðzvÞ ¼ detðvÞcðzÞ holds for all ðz; vÞ A C p�r �GLðr;CÞ and hence that c is
SOðr;CÞ-invariant but not Oðr;CÞ-invariant. Consider E � F as direct product of linear
GLðp;CÞ-spaces. Then the image Q of the algebraic map w :¼ ðj;cÞ : C p�r ! E � F

is a GLðp;CÞ-invariant complex analytic subset of E � F . In addition, Q is invariant
under the biholomorphic transformation e given by ðx;oÞ 7! ðx;�oÞ. The quotient
C p�r==SOðr;CÞ is a normal complex space and w induces a holomorphic homeomorphism
C p�r==SOðr;CÞ ! Q. Actually, this homeomorphism is biholomorphic by [6], and hence Q

is a normal Stein space.

Denote by p the restriction to Q of the canonical projection E � F ! E. The pre-
image p�1ðErÞ is a simply-connected domain in Q and p : p�1ðErÞ ! Er is a 2-sheeted cov-
ering of complex manifolds. For every k < r the holomorphic mapping p : p�1ðEkÞ ! Ek is
bijective.
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Now fix a matrix c A C p�r with a ¼ jðcÞ and put a :¼ cðcÞ. For S, defined in (5.3),
then the orbit wðSÞ ¼ G � ða; aÞ in Q is a 2-sheeted covering of M with respect to p and
hence can be identified as CR-manifold with the covering M̂M ¼ S=SOðrÞ of M.

Denote by CCRðMÞ the complex Banach algebra of all continuous CR-functions on
M. Then by [15], every f A CCRðMÞ has a unique continuous extension to the compact
subset

ZðaÞ :¼ fz A R : sjðzÞe sjðaÞ for all j e rg

of R ¼ EðrÞ, whose restriction to the domain

YðaÞ :¼ fz A R : sjðzÞ < sjðaÞ for all j e rg

in the complex Stein space R is holomorphic. Actually, via point evaluation, the spectrum
of CCRðMÞ identifies with the set ZðaÞ. As a consequence, the spectrum of CCRðM̂MÞ can be

identified with the compact subset ẐZðaÞ :¼ p�1
�
ZðaÞ

�
of Q, and every f A CCRðM̂MÞ has a

unique continuous extension to ẐZðaÞ whose restriction to the domain ŶYðaÞ :¼ p�1
�
YðaÞ

�
in the Stein space Q is holomorphic. Indeed, e splits CCRðM̂MÞ into þ1- and �1-eigenspace,
and every f in the �1-eigenspace is a square root of a function in the þ1-eigenspace.

6. Final remarks

In this final section a A E is an arbitrary element, may be invertible or not. The fol-
lowing remark is easily seen, compare also [15].

6.1. Remark. For every a A E the following conditions are equivalent:

(i) The orbit G � a is simply-connected.

(ii) The orbit G � a is totally real in E.

(iii) All singular values of a coincide.

(iv) aa� ¼ s1 for some sf 0.

6.2. Proposition. For every a A E the following conditions are equivalent:

(i) The universal covering of the orbit G � a is embeddable as CR-manifold.

(ii) All non-zero singular values of a coincide.

(iii) aa�a ¼ sa for some sf 0.

Proof. (i) ) (ii). Suppose that (i) holds. Because of Remark 6.1 we may assume
without loss of generality that G � a is not simply-connected. As a consequence of Theorem
4.3 the matrix a is not invertible and hence has 0 as singular value. By Theorem 5.2 the
orbit G � a has fundamental group Z2 and hence precisely 2 di¤erent singular values.
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(ii) ) (iii). Suppose that (ii) holds. The subgroup flg : l A C�; g A Gg of GLðEÞ maps
G-orbits onto G-orbits and respects all conditions (i)–(iii). We may therefore assume a A D
without loss of generality, see (2.2). But then aa�a ¼ a implies (iii).

(iii) ) (i). Suppose that (iii) holds. We may assume s > 0 since otherwise a ¼ 0 and
(i) would hold. But then we even may assume a A D and s ¼ 1, that is, 1 is the only non-zero
singular value of a. In case a is invertible, Remark 6.1 gives that G � a is simply-connected.
In case a is not invertible, the universal covering of M ¼ G � a is the only 2-sheeted cover-
ing of M and hence coincides with M̂M by Theorem 5.2. In any case, (i) must be true. r

The set of all a A E for which all singular values are pairwise di¤erent, i.e. kðaÞ ¼ p,
is open and dense in E. For every such a the orbit M ¼ G � a has CR-codimension p � 1
and the isotropy subgroup K ¼ fg A G : g � a ¼ ag is isomorphic to Z

p�1
2 . As a consequence,

the universal covering ~MM of M can be identified as homogeneous G-space with G acting on
itself by left translations. In particular, for p ¼ 2 and 0e t < 1 the universal covering ~MMt

of the orbit Mt :¼ G � 1 0

0 t

� �
is of hypersurface type and gives a leftinvariant strongly

pseudoconvex CR-structure on SUð2ÞFS3. In addition, the ~MMt, 0e t < 1, are pairwise
inequivalent as CR-manifolds and also are non-embeddable except for t ¼ 0 ( ~MM0 is CR-
equivalent to the standard embedding of the 3-sphere S3 in C2), compare [16], [9], [3], [13].
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