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1. INTRODUCTION

The Riemannian symmetric spaces play an important role in different
branches of mathematics. By definition, a (connected) Riemannian
manifold M is called symmetric if, to every a # M, there exists an involutory
isometric diffeomorphism sa : M � M having a as an isolated fixed point in
M (or equivalently, if the differential dasa is the negative identity on the
tangent space Ta=Ta M of M at a). In case such a transformation sa exists
for a # M, it is uniquely determined and is the geodesic reflection of M
about the point a. As a consequence, for every Riemannian symmetric
space M, the group G=GM generated by all symmetries sa , a # M, is a Lie
group acting transitively on M. In particular, M can be identified with the
homogeneous space G�K for some compact subgroup K/G. Using the
elaborate theory of Lie groups and Lie algebras E. Cartan classified all
Riemannian symmetric spaces.

The complex analogues of the Riemannian symmetric spaces are the
Hermitian symmetric spaces. By definition, a Hermitian symmetric space is a
Riemannian symmetric space M together with an almost complex structure on
M such that the metric is Hermitian and such that every symmetry sa is
holomorphic (i.e., satisfies the Cauchy�Riemann partial differential equations
with respect to the almost complex structure). Also all Hermitian symmetric
spaces were completely classified by E. Cartan. In particular, every simply con-
nected Hermitian symmetric space M can be written in a unique way as an
orthogonal direct product M=M+_M0_M& of Hermitian symmetric
spaces M= with holomorphic curvature of sign = everywhere (possibly of
dimension 0, i.e., a single point). M+ is a compact simply connected complex
manifold, M& is a bounded domain in some Cn, and M0 can be realized
as the flat space Cm�0 for some discrete subgroup 0/Cm. In partic-
ular, the almost complex structure of M is integrable. Furthermore, there
exists a remarkable duality between symmetric spaces which for instance
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gives a one-to-one correspondence between those of compact type (i.e.,
M=M+) and those of non-compact type (i.e., M=M&); see [14] for
details.

A joint generalization of real smooth as well as of complex manifolds is
the Cauchy�Riemann manifolds (CR-manifolds for short) or, more
generally, the CR-spaces, where the integrability condition is dropped and
thus also arbitrary almost complex manifolds are incorporated. These
objects are smooth manifolds M such that at every point a # M the
Cauchy�Riemann equations only apply in the direction of a certain linear
subspace Ha /Ta of the tangent space to M; see f.i. [9] or Section 2 for
details. The tangent space Ta is an R-linear space while Ha , also called the
holomorphic tangent space at a # M, is a C-linear space. The two extremal
cases Ha=0 and Ha=Ta for all a # M represent the two cases of smooth
and of almost complex manifolds, respectively.

The main objective of this paper is to generalize the notion of symmetry
to the category of CR-spaces. It turns out that for symmetries in this more
general context the requirement of isolated fixed points is no longer ade-
quate. In fact, this would happen only for Levi-flat CR-spaces (see Proposi-
tion 3.8) and hence would not be interesting. Let us illustrate our concept
on a simple example (compare also Section 4). Consider E :=Cn, n>1,
with the standard inner product as a complex Hilbert space and denote by
S :=[z # E : &z&=1] the euclidean unit sphere with Riemannian metric
induced from E. Then S is symmetric when considered as Riemannian
manifold. But S also has a canonical structure of a CR-manifold��define
for every a # S the holomorphic tangent space Ha to be the maximal com-
plex subspace of E contained in TaS/E, i.e., the complex orthogonal com-
plement of a in E. Then Ta is the orthogonal sum Ha � iRa. It can be seen
that for every isometric CR-diffeomorphism . of S, the differential da. is
the identity on iRa as soon as it is the negative identity on Ha , i.e., there
does not exist a CR-symmetry of S at a in the strict sense. On the other
hand, the unitary reflection sa(z) :=2(a | z)&z defines an involutory
isometric CR-diffeomorphism of S with differential at a being the negative
identity on Ha . We call this the symmetry of the CR-manifold S at a and
take it as a guideline for our general Definition 3.5.

Among all symmetric CR-manifolds we distinguish a large subclass
generalizing the above example. This class consists of the Shilov boundaries
S of bounded symmetric domains D/Cn in their circular convex realiza-
tions (Theorem 8.5). A remarkable feature of these CR-submanifolds is the
fact that various geometric and analytic constructions, hard to calculate in
general, can be obtained here in very explicit forms. We illustrate this on
the case of polynomial and rational convex hulls.

Recall that the polynomial (resp. rational) convex hull of a compact
subset K/Cn is the set of all z # Cn such that | f (z)|�supK | f | for every

146 KAUP AND ZAITSEV



polynomial f (resp. every rational function f holomorphic on K). If K is a
connected real-analytic curve, p(K)"K is a complex analytic subset of
Cn"K, due to J. Wermer [28], where p(K) denotes the polynomial convex
hull. Later, the analyticity of p(K)"K was proved by H. Alexander [1, 2]
for compact sets of finite length and recently by T. C. Dinh [13] for
rectifiable closed (1, 1)-currents under very weak assumptions (see also
E. Bishop [8], G. Stolzenberg [24], and M. G. Lawrence [18] for related
results). On the other hand, if K is not a smooth submanifold, p(K)"K is
not analytic in general (see, e.g., [23, 29]).

In the present paper we calculate the polynomial and the rational
convex hulls of S, where S/�D is a Shilov boundary as above (see
Corollary 8.17). Here it turns out that p(S)"S is not necessarily analytic
but rather a submanifold with ``real-analytic corners,'' even though S itself
is a connected real-analytic submanifold. Similar is the behaviour of the
rational convex hull of S. Both hulls are canonically stratified into real-
analytic CR-submanifolds such that the (unique) stratum of the highest
dimension is complex for the polynomial and Levi-flat for the rational
convex hull.

The paper is organized as follows. Preliminaries on CR-spaces are given
in Section 2. In Section 3 we introduce symmetric CR-spaces and establish
their main properties: The uniqueness of symmetries and the transitivity of
the spanned group. Example 3.11 (a generalized Heisenberg group) shows
that there exist symmetric CR-manifolds M of arbitrary CR-dimension and
arbitrary CR-codimension having arbitrary Levi form at a given point.

In Section 4 we study more intensively the unit sphere S in the complex
space Cn, some symmetric domains in S, and their coverings. In particular,
we obtain uncountable families of pairwise nonisomorphic symmetric
CR-manifolds (see Example 4.5). In Section 5 we associate to every sym-
metric CR-space M a canonical fibration and discuss the situation when
the base is a symmetric CR-space itself. As mentioned above, the under-
lying CR-structure of a symmetric CR-space does not need to be integrable.
In Section 6 we give a construction principle for symmetric CR-spaces in
terms of Lie groups and illustrate this with various examples. In fact, every
symmetric CR-space can be obtained in this way. In Section 7 we give Lie
theoretic conditions for M to be embeddable into a complex manifold. We
show by an example (see Example 7.4) that this in general is not
possible��in contrast to the case of Hermitian symmetric spaces.

Finally, in Section 8, we consider symmetric CR-manifolds arising from
bounded symmetric domains D/Cn. To be a little more specific, we
assume without loss of generality that D is realized as a bounded circular
convex domain in Cn. Then it is known that the Shilov boundary S/�D
of D (which coincides here with the set of all extreme points of the convex
set D� ) is an orbit of the group Aut(D) of all biholomorphic automorphisms
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of D. Furthermore, every maximal compact subgroup K of Aut(D) still acts
transitively on S, and, with respect to a suitable K-invariant Hermitian
metric, S is a symmetric CR-manifold. Our main result states that in case
D does not have a factor of tube type, (i) every smooth CR-function on S
extends to a continuous function on D� holomorphic on D, and (ii) the
group AutCR (S) of all smooth CR-diffeomorphisms of S coincides with the
group Aut(D).

Notation. For every vector space E over the base field K=R or K=C
we denote by L(E) the space of all K-linear endomorphisms of E and by
GL(E)/L(E) the subgroup of all invertible operators. More generally, for
every subset S/E put GL(S) :=[g # GL(E) : g(S)=S] and denote by
Aff(S) the group of all affine transformations of E mapping S onto itself.

Kn_m is the K-Hilbert space of all n_m-matrices over K (n=row-index)
with the inner product (u | v)=tr(u*v) and u*=u� $ # Km_n the adjoint.

By a complex structure we always understand a linear operator J on a
real vector space with J2=&id. If misunderstanding is unlikely we simply
write ix instead of J(x).

For complex vector spaces U, V, W a sesqui-linear map 8: U_V � W is
always understood to be conjugate linear in the first and complex linear in
the second variable.

With U(n), O(n), Sp(n), etc., we denote the unitary, orthogonal, and
symplectic groups (see [14] for related groups). In particular, we put
T :=U(1)=exp(iR) and R+ :=exp(R). For every topological group G we
denote by G0 the connected identity component. A continuous action of G
on a locally compact space M is called proper if the mapping G_M �
M_M defined by (g, a) [ (g(a), a) is proper, i.e., pre-images of compact
sets are compact.

For every set S and every map _: S � S we denote by Fix(_) :=
[s # S : _(s)=s] the set of all fixed points.

For Lie groups G, H, etc., the corresponding Lie algebras are denoted by
small German letters g, h, etc. For linear subspaces m, n/g we denote by
[m, n] always the linear span of all [x, y] with x # m, y # n.

2. PRELIMINARIES

Suppose that M is a connected smooth manifold of (finite real) dimen-
sion n. Denote by Ta :=TaM, a # M, the tangent space which is a real vec-
tor space of dimension n. An almost Cauchy�Riemann structure (almost
CR-structure for short) on M assigns to every a # M a linear subspace
Ha=HaM/Ta (called the holomorphic tangent space to M at a) together
with a complex structure on Ha in such a way that Ha and the complex
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structure depend smoothly on a. Smooth dependence can be expressed in
the following way: Every point of M admits an open neighbourhood U/M
together with a linear endomorphism ja of Ta for every a # U such that & j2

a

is a projection onto Ha with jav=iv for all v # Ha , and ja depending smoothly
on a # U. Then, in particular, all Ha have the same dimension. A connected
smooth manifold together with an almost CR-structure on it is called in the
sequel an almost CR-manifold, or a CR-space for short. For more details on
(almost) CR-manifolds see, e.g., [5, 9, 12, 15, 25].

In the following M always denotes a CR-space. Denote by D=D(M) the
Lie algebra of all smooth vector fields on M and by H=H(M) the sub-
space of all vector fields X with Xa # Ha for all a # M. Then, for all a # M,
Ha :=[Xa : X # H]=Ha holds and (JX)a=i(Xa) canonically defines a com-
plex structure J on H. Define inductively

Hk :=Hk&1+[H, Hk&1], where H1 :=H

and H j :=0 for j�0. (2.1)

Then [Hr, Hs]/Hr+s holds for all integers r, s and H� :=�k Hk is the Lie
subalgebra of D generated by H. Also, we call the quotient vector spaces

T r
a :=Ta �Ha and T rr

a :=Ta �H�
a

the real and the totally real part of Ta . The complex dimension of Ha and
the real dimension of T r

a do not depend on a # M��they are called the
CR-dimension and the CR-codimension of M. Finally, M is called minimal
(in the sense of Tumanov [26]) if U=N holds for every domain U/M
and every closed smooth submanifold N/U with HaM/Ta N for all
a # N. It is known that in case M is real-analytic (all CR-spaces we discuss
later will have this property, see Corollary 3.7) minimality is equivalent to
T rr

a =0 for all a # M, i.e., to the finite type in the sense of Bloom and
Graham [7]. M is called totally real if M has CR-dimension 0. The
CR-spaces of CR-codimension 0, i.e., satisfying HaM=Ta M, are also
called almost complex manifolds.

The CR-spaces form a category in a natural way. By definition, a smooth
map .: M � N of CR-spaces is called a CR-map if, for every a # M and
b=.(a) # N, the differential da .: Ta M � Tb N maps Ha M complex linearly
into HbN. For every M we denote by Aut(M) or AutCR (M) the group of
all CR-diffeomorphisms .: M � M and endow this group with the compact
open topology.

Suppose, N is a CR-space and M/N is a submanifold. We call M a
CR-subspace of N if the dimension of HaM :=(TaM & HaN) & i(TaM &

Ha N) does not depend on a # M. Then M is a CR-space with the induced
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CR-structure. A CR-space M is called integrable or a CR-manifold if the
following integrability condition is satisfied:

Z :=[JX, Y]+[X, JY] # H and JZ=[JX, JY]&[X, Y]

for all X, Y # H. (2.2)

In the special case, where M is real-analytic (which includes that the
holomorphic tangent space HaM depends in a real-analytic way on a # M)
it is known (compare f.i. [5, 9]) that (2.2) is equivalent to the existence of
local realizations of M as a CR-submanifold of some Cn. In that case there
even exist a complex manifold N and a (global) realization of M as a real-
analytic CR-submanifold of N which is generic, i.e., TaM+iTa M=TaN
for all a # M (see [3]).

An important invariant of a CR-space M is the so-called Levi form
defined at every point a # M in the following way. Denote by ?a : Ta �
Ta �Ha the canonical projection. Then it is easy to see that there exists a
map

|a : Ha _Ha � Ta �Ha with |a(Xa , Ya)=?a([X, Y]a)

for all X, Y # H

(in the proof of Theorem 3.3 a more general satement actually will be
shown). Then |a is R-bilinear and skew-symmetric. For all =, +=\1, there
exist uniquely determined R-bilinear maps

|=+
a : Ha_Ha � (Ta�Ha)�R C with |=+

a (sx, ty)=s=t+|=+
a (x, y)

for all s, t # T, x, y # Ha such that |a=� |=+
a .

2.3. Definition. The sesqui-linear part La :=|&1, 1
a of |a is called the

Levi form of M at a, i.e.,

4La(x, y)=(|a(x, y)+|a(ix, iy))+i(|a(ix, y)&|a(x, iy))

and in particular 2La(x, x)=i|a(ix, x) # i(Ta�Ha) for all x, y # Ha . The
convex hull of [La(x, x) : x # Ha] is called the Levi cone at a # M and its
interior always refers to the linear space i(Ta �Ha). The CR-space M is
called Levi flat if La=0 holds for every a # M.
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Denote by * the conjugation of (Ta�Ha)� R C given by (!+i')* :=
(&!+i') for all !, ' # Ta �Ha . The following statement is obvious.

2.4. Lemma. The Levi form La is *-Hermitian, that is, La(x, y)=
La( y,x)* for all x, y # Ha . In the case, the integrability condition (2.2) holds,
we have |1, 1

a =|&1, &1
a =0 and

2La(x, y)=|a(x, y)+i|a(ix, y).

Various authors call &2iLa the Levi form. In [9], L=La is called the
extrinsic Levi form. If M is a CR-subspace of a complex manifold U,
(Ta �Ha)�R C can be canonically identified with a complex subspace of
TaU�HaM. Then, for every x # Ha the vector L(x, x) # iTa �Ha is transversal
to M and points into the ``pseudoconvex direction'' of M. Bogges and
Polking [10] proved that all CR-functions on M extend holomorphically
to a wedge in U ``in the direction of the Levi form.'' This was generalized
by Tumanov [26] to the case where M is minimal, whereas Baouendi and
Rothschild [6] proved the necessity of the minimality condition.

Let us illustrate the Levi form at a simple example: Let M :=[(z, w) #
C2 : zz� +ww� =1] be the euclidean sphere and put a :=(1, 0), e :=(0, 1).
Then M is a CR-submanifold with TaM=iRa�Ce and Ha M=Ce. We
identify (TaM�Ha M)�R C in the obvious way with the complex line
Ca/C2. Consider the vector field X # H defined by X(z, w)=(&w� , z� ) for all
(z, w) # M. Then [JX, X]a=2ia=|a(ie, e) and hence La(e, e)=&a. This
vector points from a # M into the interior of the sphere M.

For the rest of the section assume that on M there is given a Riemannian
metric, i.e., every tangent space Ta is a real Hilbert space with respect to
an inner product (u | v) a depending smoothly on a # M. Then we call M
an Hermitian CR-space if the metric is compatible with the CR-structure in
the sense that &iv&=&v& holds for all a # M, v # Ha , where &v&=- (v | v).
In particular, every Ha is a complex Hilbert space. If the CR-structure of
a Hermitian CR-space M is integrable, we call M an Hermitian
CR-manifold. In the case of vanishing CR-codimension, i.e., HaM=TaM,
Hermitian CR-spaces are usually called Hermitian manifolds.

For every a # M and every integer k�0, let Hk be as in (2.1) and let
H k

a /Ta be the orthogonal complement of Hk&1
a in Hk

a . Then H 0
a=0 and

H 1
a=Ha is the holomorphic tangent space in a. If we denote by H &1

a $T rr
a

the orthogonal complement of H�
a in Ta we obtain the following

orthogonal decomposition

Ta= �
k�&1

H k
a . (2.5)
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Denote by ?k
a # L(Ta) the orthogonal projection onto H k

a . Then a [ ?k
a

defines a (not necessarily continuous) tensor field ?k of type (1, 1) on M.
For later use we define

T +
a := �

k even

H k
a and T &

a := �
k odd

H k
a . (2.6)

The Hermitian CR-spaces form a category together with the contractive
CR-mappings as morphisms (i.e., &da.(v)&�&v& for all a # M, v # Ta M).
We always denote by IM /AutCR (M) the closed subgroup of all isometric
CR-diffeomorphisms. Then it is known that IM is a Lie group acting
smoothly and properly on M. In particular, IM has dimension �n(n+2)+
m(m+1)�2, where M has CR-dimension n and CR-codimension m. The full
CR-automorphism group AutCR (M) can be infinite-dimensional. In case of
vanishing CR-dimension we have the full sub-category of (connected)
Riemannian manifolds and in case of vanishing CR-codimension we have
the full sub-category of Hermitian manifolds. In both sub-categories there
exists the classical notion of a symmetric space. In the following we want
to extend this concept to arbitrary Hermitian CR-spaces.

3. SYMMETRIC CR-SPACES

3.1. Definition. Let M be an Hermitian CR-space and let _: M � M
be an isometric CR-diffeomorphism. Then _ is called a symmetry at the
point a # M (and a is called a symmetry point of M) if a is a (not
necessarily isolated) fixed point of _ and if the differential of _ at a coin-
cides with the negative identity on the subspace H &1

a �H 1
a of Ta .

3.2. Proposition. At every point of M there exists at most one sym-
metry. Furthermore, every symmetry is involutive.

The statement is an easy consequence of the following.

3.3. Uniqueness Theorem. Let ., � be isometric CR-diffeomorphisms
of the Hermitian CR-space M with .(a)=�(a) for some a # M. Then .=�
holds if the differentials da . and da� coincide on the subspace H &1

a �H 1
a of

Ta=Ta M.

Proof. Without loss of generality we may assume that � is the identity
transformation of M. Then a is a fixed point of . and by a well known fact
(compare f.i. [14, p. 62]) we only have to show that the differential
* :=da. is the identity on Ta . Now *(Xa)=({X)a holds for every vector
field X # D, where { is the Lie automorphism of D induced by .. For all
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r, s>0 and k :=r+s, every smooth function f on M and all X # Hr, Y # Hs

the formula

?k
a([ fX, Y]a)= f (a) } ?k

a([X, Y]a)

is easily derived, where the orthogonal projection ?k
a is defined as above.

On the other hand, every X # Hr with ?r
a(Xa)=0 can be written as the finite

sum X=X0+ f1X1+ } } } + fmXm with X0 # Hr&1, X1 , ..., Xm # Hr and
smooth functions f1 , ..., fm on M vanishing in a. Therefore, ?k

a([X, Y]a)
only depends on the vectors ?r

a(Xa) and ?s
a(Ya) for X # Hr, Y # Hs.

Since * is an isometry of Ta and { leaves invariant all subspaces Hk/D

also all H k
a must be left invariant by *. We show by induction on k that

actually * is the identity on every H k
a . For k�1 this follows from the

assumptions. For k>1, fix X # H, Y # Hk&1 and consider the vector
v :=?k

a([X, Y]a) # H k
a . By induction hypothesis we then have ({X)a=Xa ,

({Y)a=Ya and hence

*(v)=?k
a(*(v))=?k

a(({[X, Y])a)=?k
a([{X, {Y]a)=?k

a([X, Y]a)=v. K

3.4. Remark. The proof of Proposition 3.3 shows that for every sym-
metry _ of M at a the differential *=da_ satisfies *(v)=(&1)k v for every
v # H k

a and every k�&1, i.e., *=7k(&1)k ?k
a , or equivalently, Fix(\*)=

T \
a .

3.5. Definition. A connected Hermitian CR-space M is called sym-
metric (or an SCR-space for short) if every a # M is a symmetry point. The
corresponding symmetry at a is denoted by sa .

In the sequel we adopt the following notation: For a given SCR-space M
we denote as in Section 2 by I=IM the Lie group of all isometric CR-dif-
feomorphisms of M. Let G=GM be the closed subgroup of I generated
by all symmetries sa , a # M. Fix a base point o # M and denote by
K :=[g # G : g(o)=o] the isotropy subgroup at o.

3.6. Proposition. G is a Lie group acting transitively and properly on
M. The connected identity component G0 of G has index �2 in G and coin-
cides with the closed subgroup of IM generated by all transformations sa b sb

with a, b # M. The isotropy subgroup K is compact and M can be canonically
identified with the homogeneous manifold G�K via g(o) [ gK. M is compact
if and only if G is a compact Lie group.

Proof. There exists an open subset U{< of M such that for every
k�&1 the dimension of H k

a does not depend on a # U. Therefore, every
tensor field ?k is smooth over U, i.e., the orthogonal decomposition (2.5)
depends smoothly on a as long as a stays in U. We may assume without
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loss of generality that for a fixed =>0 and every a # U, the exponential
mapping Expa is defined on the open ball Ba of radius = about the origin
in Ta and that Expa is a diffeomorphism from Ba onto a neighbourhood
Na /M of a. Every isometric diffeomorphism . # IM is linear in local nor-
mal coordinates, more precisely, for every a # U with c :=.(a) # U, the
diagram

Expa Expc

Ba ww�
da. Bc

Na ww�
. Nc

commutes. Since dasa=�k (&1)k ?k
a depends smoothly on a # U and since

G consists of isometries this implies the smoothness of the mapping
U_U � M defined by (a, b) [ sa(b). Now fix u # U and denote by
A :=G(u) the orbit of u under the group G. Then A is a closed smooth sub-
manifold of M since G acts properly on M. Fix a # A and v # T &

a M
arbitrarily. Choose a smooth curve #: [0, 1] � U with #(0)=a and
#$(0)=v. Then :(t)=s#(t)(a) defines a smooth curve in A with :(0)=a and
:$(0)=2v. This proves T &

a M/TaA and hence T &1
c M/TcA for all c # A

since a # A was arbitrarily chosen. Now fix a vector w # T +
a M. Then there

exist smooth vector fields X1, ..., X2k on M such that X j
c # T &

c M for all
1� j�2k, c # A and such that w=�k

j=1 [X j, Xk+ j]a . But we know
already that all X j 's are tangent to the submanifold A/M, i.e., all their
brackets are tangent to A and therefore w # TaA. This implies TaA=TaM
and A=M since A is closed in M. Therefore G acts transitively on M. K

The proof of Proposition 3.6 shows that an Hermitian CR-space M is
already symmetric as soon as the set of symmetry points of M has an inte-
rior point in M. The transitivity of the G-action has several consequences.

3.7. Corollary. Every SCR-space M has a unique structure of a
real-analytic CR-manifold in such a way that every isometric diffeomorphism
of M is real-analytic. All tensors ?k are real-analytic on M and also the map-
ping a [ sa from M to G is real-analytic. In particular, the dimension of
H k

a /Ta does not depend on a # M for every k.

In the following we will always consider SCR-spaces as real-analytic
manifolds according to Corollary 3.7. The number }=}(M) :=max[k�
&1 : H k

a {0] does not depend on a # M. Example 7.5 will show that
arbitrary values of }{0 occur. Cn_Rm is a Levi flat CR-submanifold of
Cn+m and as another corollary of Proposition 3.6 we have:
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3.8. Proposition. Let M be a symmetric CR-space with CR-dimension
n and CR-codimension m. Then for every a # M the following conditions are
equivalent.

(i) a is an isolated fixed point of the the symmetry sa .

(ii) M is Levi flat.

(iii) M is locally CR-isomorphic to an open subset of Cn_Rm. In
particular, M is a CR-manifold.

Proof. (i) O (ii). The differential dasa is the identity on the subspace
H 2

a /Ta due to Remark 3.4. Therefore, if a is isolated in Fix(sa), we have
H 2

a=0 and hence La=0. By homogeneity then the Levi form vanishes at
every point of M, i.e., M is Levi flat.

(ii) O (iii). Suppose that M is Levi flat. Then the holomorphic
tangent spaces form an involutive distribution on M and define a foliation
of M. Let N be the leaf through a, i.e., the maximal connected immersed
smooth submanifold N of M with TcN=Hc M for all c # N. Then N is an
Hermitian almost complex manifold in the leaf topology invariant under
every symmetry sc , c # N. Therefore, N is an Hermitian symmetric space
and in particular a complex manifold; see [14]. But M locally is
CR-isomorphic to a direct product U_V, where U/N and V/Rm are
open subsets.

(iii) O (i). Condition (iii) implies H &1
a �H 1

a=Ta and hence da sa=
&id, i.e., a is an isolated fixed point of sa . K

Every SCR-space M may be considered as a reflection space in the sense
of [19], i.e., if a ``multiplication'' on M is defined by x } y :=sxy for all
x, y # M, the following rules hold: x } x=x, x } (x } y)= y, and x } ( y } z)=
(x } y) } (x } z) for all x, y, z # M. The SCR-spaces form in various ways a
category. We prefer here the following notion (ignoring the Riemannian
metrics on M and N):

3.9. Definition. A CR-map .: M � N is called an SCR-map if
.(x } y)=.(x) } .( y) for all x, y # M.

If . in addition is contractive we also call it a metric SCR-map. In this
sense it is clear what (metric, isometric) SCR-isomorphisms, SCR-auto-
morphisms are. For instance, GM consists of isometric SCR-automor-
phisms of M. Also, the universal covering ?: M� � M of an SCR-space M
has a unique structure of an SCR-space such that locally ? is an isometric
CR-diffeomorphism.

The following statement can be used to construct SCR-spaces.
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3.10. Lemma. Let M be a connected Hermitian CR-space with a base
point o and let H/IM be a subgroup acting transitively on M. Suppose that
_: M � M is a diffeomorphism with _(o)=o and _2=id such that the
following conditions are satisfied:

(i) _ b H=H b _,

(ii) the differential do_ # L(ToM) is a linear isometry with (HoM�

T rr
o M)/Fix(&do_).

Then _ is a symmetry of M.

Proof. Fix a # M and choose g, h # H with g(a)=o and _=h b _ b g. The
claim follows from the identity da _=doh b do_ b da g. K

3.11. Example. Let E, F be complex Hilbert spaces of finite dimension.
Suppose that w [ w* is a conjugation of F (i.e., a conjugate linear,
involutive isometry of E) and let 8: E_E � F be an Hermitian mapping
with respect to the conjugation * (i.e., 8 is sesqui-linear and 8(v, u)=
8(u,v)* for all u, v # E). Set

V :=[w # F : w+w*=0] and

M :=[(z, w) # E�F : w+w*=8(z, z)].

Then M is a CR-submanifold of E�F with

TaM=[(z, w) # E�F : w+w*=8(e, z)+8(z, e)]

HaM=[(z, w) # E�F : w=8(e, z)]

for every a=(e, c) # M. The group

4 :=[(z, w) [ (z+e, w+8(e, z)+8(e, e)�2+v) : e # E, v # V]

acts transitively and freely on M by affine CR-diffeomorphisms. Therefore
M has a group structure, a generalization of the Heisenberg group. For
o :=(0, 0) # M, there exists a unique 4-invariant Riemannian metric on M
such that ToM=E�V is the orthogonal sum of E and V. By Lemma 3.10,
M is a symmetric CR-manifold��for every a=(e, c) # M, the corresponding
symmetry sa is given by (z, w) [ (2e&z, w+8(2e, e&z)) and GM=4 _

so4, G0
M=4. The full group AutCR (M) does not act properly on M since

it contains all transformations of the form (z, w) [ (tz, tt� w), t # C*.
For every ! # E, the vector field X on E�F defined by X(z, w)=

(!, 8(z, !)) satisfies Xa # Ha M for all a # M. From this it is easily derived
that the Levi form Lo at o # M as defined in (2.3) coincides with the
Hermitian map 8: E_E � F after the identification HoM=E and
(ToM�Ho M)�R C$F.
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The next statement will be used later.

3.12. Lemma. Let E, V/F, M, 8, 4 be as in Example 3.11. Assume that
8 is non-degenerate in the following sense: For every e # E with e{0 there
exists c # E with 8(e, c){0. Then

Aff(M)=4 < GL(M)

and

GL(M)=[('_=) # GL(E)_GL(V) : 8('z, 'z)==8(z, z) for all z # E].

Furthermore, the group IM of all isometric CR-diffeomorphisms of M is given
by

IM=4 < 1/Aff(M),

where 1 :=[('_=) # GL(M) : ' unitary, = orthogonal].

Proof. Let us start with an arbitrary real-analytic CR-diffeomorphism
. of M satisfying .(o)=o. Then . extends to a holomorphic map
.: U � E�F for a suitable open connected neighbourhood U of M in
E�F (see, e.g., [5, Sect. 1.7]). The differential g :=do. # GL(E�F ) leaves
Ho M=E invariant and hence can be written as operator matrix g=( '

0
:
=) #

GL(E�F ) with a linear operator :: F � E. Since also ToM=E�V is
invariant under g, the operator = # GL(F ) must leave invariant the subspace
V/F, i.e., = # GL(V)/GL(F ) and, in particular, =(w*)=(=w)* for all
w # F. There exist holomorphic functions h: U � E, f: U � F vanishing of
order �2 at o such that

.(z, w)=('z+:w+h(z, w), =w+ f (z, w))

for all (z, w) # M. For every z # E, v # V and

w=w(z, v) :=v+8(z, z)�2

we have (z, w) # M and hence

=8(z, z)+ f (z, w)+ f (z, w)*=8('z+:w+h(z, w), 'z+:w+h(z, w)) (V)

for all z # E and v # V. Comparing terms in (V) we derive =8(z, z)=
8('z, 'z) for all z # E. Now suppose that . is affine, i.e., f =0 and h=0.
Comparing terms in (V) again we get 8(:v, 'z)=0 for all z # E and v # V.
But then the non-degeneracy of 8 implies :v=0 for all v # V, i.e., :=0.
This proves that the groups Aff(M) and GL(M) have the claimed forms.
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Now suppose that . # IM is an isometry. Since there is a unique real-
analytic structure on M such that the Lie group IM acts as a real-analytic
transformation group and since the same holds for the Lie subgroup 4,
these two structures must coincide, i.e., . is real-analytic. Furthermore,
g=do. is a linear isometry of E�V, i.e., g=( '

0
0
=) with ' unitary and =

orthogonal. Together with =8(z, z)=8('z, 'z) for all z # E this implies
g # IM and hence .= g # GL(M) as a consequence of the Uniqueness
Theorem 3.3. K

For all CR-manifolds M in Example 3.11 with 8{0 the group G0 is
nilpotent of nilpotency class 2=}(M). For examples with nilpotent groups
of higher class compare Section 7. An explicit example of class 3 with
lowest possible dimension is the following.

3.13. Example. Set

M :=[(z, w, v) # C3 : Im(w)=zz� , Im(v)=Im(wz� )].

Then M is a CR-submanifold of C3 with CR-dimension 1 and CR-
codimension 2 and every (a, b, c) # M induces an affine CR-automorphism
of M by

(z, w, v) [ (z+a, w+2ia� z+b, v+(2ia� 2&b� ) z+(a+2a� ) w+c). (V)

Indeed, if we denote the right hand side of (V) by (z, w, v) then

Im(wz� )=Im(wz� +2izza+z� b+2ia� 2z+a� w+a� b)

=Im(v+(w&w� ) a� &b� z+2ia� 2z+a� w+c)=Im(v).

An elementary calculation shows that the transformations (V) form a nilpo-
tent Lie group G0 acting freely and transitively on M. In particular, M has
the structure of a group with the product (a, b, c) x (z, w, v) :=(z, w, v)
and the unit o :=(0, 0, 0). There is a unique G0-invariant Riemannian
metric on M whose restriction to the tangent space ToM=C�R2/C3 is
the one inherited from C3. The transformation so : (z, w, v) [ (&z, w, &v)
is a symmetry at o by Lemma 3.10. Hence M is a symmetric CR-manifold.
It can be verified that IM=GM=G0 _ s0 G0 is the group of all CR-
isometries. The action of AutCR (M) is not proper since this group contains
all transformations of the form (z, w, v) [ (tz, t2w, t3v), t # R*.

The group Z of all translations (z, w, v) [ (z, w, v+c), c # R, is in the
center of G0 and M�Z is CR-isomorphic to the classical Heisenberg group
[(z, w) # C2 : Im(w)=zz� ] that already occurred in Example 3.11 in a
slightly different form.
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4. SOME EXAMPLES DERIVED FROM THE SPHERE

We start with the inclusion of the complex manifolds

Bn /Cn/Pn , (4.1)

where Bn :=B :=[z # Cn : (z | z)<1] is the euclidean ball and Pn=Pn(C)
is the complex projective space with homogeneous coordinates [z0 , z1 , ..., zn].
We identify every z # Cn with the point [1, z] # Pn . It is known that the
group Aut(Pn) of all biholomorphic automorphisms of Pn coincides with
the group of all projective linear transformations PSL(n+1, C). Further-
more.

Aut(B)=[g # Aut(Pn) : g(B)=B]=PSU(1, n).

The group Aut(B)/Aut(Pn) has three orbits in Pn��the ball B, the unit
sphere S :=�B and the outer domain D :=Pn"B� . Actually, it is known
that again

Aut(D)=[g # Aut(Pn) : g(D)=D]=Aut(B)

holds. The spaces Bn , Cn, and Pn are symmetric Hermitian manifolds with
constant holomorphic sectional curvature <0, =0, and >0, respectively.
Also, Bn and Pn are dual to each other in the sense of symmetric Hermitian
manifolds.

4.2. Example. The unit sphere S=�B=[z # Cn : (z | z)=1] is a CR-
submanifold of Cn, whose holomorphic tangent space at a # S is
Ha=[v # Cn : (a | v)=0]. To avoid the totally real case n=1 let us assume
for the rest of the section that always n>1 holds. Then S is a minimal
CR-manifold. It is known (compare f.i. [27]) that for every pair U, V of
domains in S and every CR-diffeomorphism .: U � V there exists a
biholomorphic transformation g # Aut(Pn) with .= g | U. In particular this
implies

AutCR (S)=[g # Aut(Pn) : g(S)=S]=Aut(B)

and the maximal compact subgroups of AutCR (S) are in one-to-one corres-
pondence to the points of B.

By restricting the flat Hermitian metric of Cn, the sphere S becomes an
Hermitian CR-manifold. The unitary group U(n) coincides with [g #
AutCR (S) : g(0)=0], acts transitively on S by isometric CR-diffeomorphisms,
and it is easy to see that actually IM=U(n) holds. Moreover, z [
2(a | z) a&z defines a symmetry at a # S and GM=[g # U(n) : det(g)=
(\1)n&1]. The group G0=SU(n) is simple whereas IM=U(n) has center
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Z$T. For every closed subgroup A/Z also S�A is an SCR-space with
CR-dimension n&1 in a natural way��for instance for A=[\id] we get
the real projective space P2n&1(R) and for A=Z the complex projective
space Pn&1(C).

The space of (projective) hyperplanes L/Pn is again a complex projec-
tive space of dimension n on which the group AutCR (S)/Aut(Pn) acts
with three orbits. These consist of all L meeting S in no, in precisely one,
and in more than one point, respectively. Assume L & S{< in the follow-
ing and consider the domain W :=S"L in S. Let o # W be a point with the
maximal distance from the hyperplane L & Cn. We will see that W has the
structure of a symmetric CR-manifold. We claim that there exists a
CR-isomorphic model Q/Cn of W in such a way that Q is closed in Cn

and such that every CR-diffeomorphism of Q is the restriction of a complex
affine transformation of Cn, that is, AutCR (Q)=Aff(Q). Indeed, choose a
transformation g # Aut(Pn) with g(L) & Cn=< and put Q :=g(W). We
call Q an affine model of W. Let us consider the two cases L & B=< and
L & B{< separately.

4.3. Example. Let U :=S"L for a hyperplane L with L & B{<, say
U=[z # S : z1 {0] and o=(1, 0, ..., 0). The group AutCR (U) acts tran-
sitively on U and has compact isotropy subgroup U(n&1) at o. Therefore,
U is a symmetric CR-manifold with

IU=AutCR (U)$U(1, n&1)

and the symmetry \=so at o is given by \(t, v)=(t, &v) for all
(t, v) # C1+(n&1). An affine model is

R :=[z # Cn : (\z | z)=1]=[(t, v) # C1+(n&1) : tt� &(v | v)=1] (4.4)

with (t, v) [ (1�t, v�t) a CR-diffeomorphism U � R. The universal covering
R� of R is again a symmetric CR-manifold and can be realized via
(s, v) [ (exp(s), v) as (see also Example 3.12)

R� =[(s, v) # C1+(n&1) : exp(s+s� )&(v | v)=1].

4.5. Example. Let V :=S"[a] for some point a # S, say a :=(0, ...,0, 1)
and hence o=&a. Then V is a cell in S and the Cayley transform
(v, t) [ (- 2 v�(1&t), (1+t)�(1&t)) for all (v, t) # C(n&1)+1, t{1, defines
a CR-diffeomorphism of V onto the affine model

N :=[(v, t) # C(n&1)+1 : t+t� =(v | v)].
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This SCR-space occurs already in Example 3.11 and as a consequence of
Lemma 3.12 we have

IN=G0
N < U(n&1)

and

AutCR (N)=Aff(N)=G0
N < (R+_U(n&1)),

where the groups U(n&1) and R+ act on N by (v, t) [ (=v, t) and
(v, t) [ (sv, s2t), respectively. Consider for every s # R+, the central sub-
group 1s :=[(v, t) [ (v, t+ins) : n # Z] of GN . Then the quotient manifold
Ns :=N�1s is an SCR-space diffeomorphic to Cn_T. But since the groups
1s and 1s~ are not conjugate in AutCR (N) for s{s~ the manifolds Ns and
Ns~ are not isomorphic as CR-manifolds. We obtain a continuous family of
symmetric CR-manifolds that are pairwise nonisomorphic even in the
category of CR-manifolds.

In analogy to (4.1) we have inclusions

U/V/S. (4.6)

But in contrast to (4.1), U is not ``a bounded domain'' (meaning relatively
compact) in the cell V. In all three cases M=U, V, S, the center Z of IM

is either T or R and the quotient CR-manifold M�Z is Bn&1 , Cn&1, and
Pn&1 , respectively. We call the symmetric CR-manifold R$U the dual unit
sphere in Cn (compare also the discussion at the end of Section 7). We
remark that the action of T on U given by scalar multiplication has as
quotient the complex manifold Cn&1 which is not biholomorphically equiv-
alent to the bounded domain Bn&1=U�Z.

The group GM is simple in case M=U, S and is nilpotent in case M=V.
Also, the isotropy subgroup K at a point a # M acts irreducibly on the
tangent space HaM if M=U, S and K is a finite group in the third case.
In all three cases the group IM acts transitively on the subbundle
[v # HaM : a # M, &v&=1] of the tangent bundle TM. In particular, M is
an SCR-space of constant holomorphic sectional curvature.

5. A CANONICAL FIBRATION

Let again M be an SCR-space and let o # M be a fixed point, called the
base point in the following. Let G=GM and K=[g # G : g(o)=o] be as
before. Then so is in the center of K and _(g) :=so gso defines an involutive
group automorphism _ of G. Therefore K is contained in the closed sub-
group Fix(_)/G. Let L be the smallest open subgroup of Fix(_) contain-
ing K. Then so is contained in the center of L and sa=so for all a # L(o).
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Identify as before M with the homogeneous space G�K and put N :=G�L.
Then we have canonical fibre bundles

G w�
+ M �

& N

defined by g [ gK [ gL. The typical fibres are K for + and the connected
homogeneous space L�K for &. The following statement follows directly
from the definition of _.

5.1. Lemma. The fibration + satisfies + b _=so b +.

Because of Lemma 5.1, _ can be seen as a lifting of so via +. On the other
hand, so can be pushed forward via &:

5.2. Proposition. For every c # N, there exists a unique involutive dif-
feomorphism sc : N � N such that & b sa=sc b & for all a # M with &(a)=c.
The differential da& has kernel T +

a M in TaM and hence induces a linear
isomorphism from T &

a M onto TcN. Every sc has c as an isolated fixed point.
Furthermore, N is simply connected if M is simply connected.

Proof. Since the fibration & is G-equivariant we have to establish the
map sc only for the base point c :=&(o) of N. But then sc is given by
gL [ _(g) L since so can be identified with the map gK [ _(g) K of M.
The tangent space ToF of the fiber F :=&&1(c)=L(o) at o is T +

o M and
hence is the kernel of the differential do&. Consequently, the differential dcsc

is the negative identity on TcN and hence c is an isolated fixed point of sc .
Now suppose that M is simply connected and denote by :: H � G0 the
universal covering group of G0. Then the subgroup :&1(K & G0) of H is
connected and hence by the construction of L also the subgroup
:&1(L & G0) is connected, i.e., N=G0�(L & G0) is simply connected. K

The manifold N in Proposition 5.2 together with all involutive dif-
feomorphisms sc , c # N, is a symmetric space in the sense of [20]. An inter-
esting case occurs when N has the structure of a symmetric CR-manifold
in such a way that

(i) & is a CR-map and M, N have the same CR-dimension.

(ii) & is a partial isometry, i.e., the restriction of da& to T &
a M is an

isometry for every a # M.

(iii) sc is a symmetry at c for every c # N.

We say that the SCR-space M has symmetric reduction N if the properties
(i)�(iii) are satisfied. For every g # L and a= g(o) we have the commutative
diagram
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T &
o M www�

d08g T &
a M

do& da&

TcN www�
dc9g TcN

where for better distinction we denote by 8g the diffeomorphism of M
given by g and by 9g the corresponding diffeomorphism of N (that is,
8g(hK)= ghK and 9g(hL)= ghL). Put HcN :=do&(HoM) and give it the
complex structure for which do&: HoM � HcN is a complex linear
ismorphism. Furthermore, endow TcN with the Riemannian metric for
which do&: T &

o M � TcN is an isometry. Then the existence of a G-inva-
riant almost CR-structure on N with property (i) is equivalent to the con-
dition that all operators dc9g , g # L, leave the subspace HcN invariant and
are complex linear there. In the same way, a G-invariant Riemannian
metric on N with property (ii) exists if and only if every dc9g , g # L, is an
isometry of TcN. This happens for instance (after possibly changing the
metric of M) if the group L is compact, or more generally, if the linear
group [dc9g : g # L] is compact.

We notice that as a consequence of Lemma 3.10, condition (iii) is
automatically satisfied if (i), (ii) hold. Also, in case that for the fibration
&: M � N there exists a Riemannian metric on N with the property (ii) and
such that in addition every &-fibre is a symmetric Riemannian manifold, the
space M is a bisymmetric space in the sense of [16].

The following sufficient condition for the existence of a symmetric reduc-
tion is easily seen; we leave the proof to the reader.

5.3. Lemma. Suppose that the subgroup [g # IM : & b g=&] acts trans-
itively on some &-fibre. Then this group acts transitively on every &-fibre and
M has a symmetric reduction.

Not every symmetric CR-space has a symmetric reduction. Consider for
instance Example 3.13. Then L0 is the subgroup of all (0, b, 0) # M with
b # R, and N :=G�L can be identified with C_R in such a way that
&(z, w, v)=(z, Re(v)&3 Re(w) Re(z)). Furthermore, the action of L0 on
C_R is given by (z, t) [ (z, t&4b Re(z)), b # R. This implies that there
cannot exist any G-invariant Riemannian metric on N. Also, there is no
CR-structure on N satisfying property (i).

6. A CONSTRUCTION PRINCIPLE

In this section we give a Lie theoretical construction of symmetric
CR-spaces such that every SCR-space can be obtained is this way. We start
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with an arbitrary connected Lie group G0 together with an involutive
group automorphism _ of G0. Then there is a Lie group G with connected
identity component G0 and an element s # G with G=G0 _ sG0 and
_(g)=sgs for all g. Let g be the Lie algebra of G and denote by { :=Ad(s)
the Lie algebra automorphism of g induced by _ (here and in the following
Ad always refers to the group G). Put

l :=Fix({) and m :=Fix(&{). (6.1)

Then l is a Lie subalgebra of g and m is a Lie triple system; see [20]. For
every g # Fix(_), the decomposition g=l�m is invariant under Ad(g).

Now choose a compact subgroup K/Fix(_), an Ad(K)-invariant
Riemannian metric on g and a linear subspace h/m together with a com-
plex structure J on h satisfying the following properties:

(i) &Jx&=&x& for all x # h.

(ii) K contains the element s.

(iii) Ad(g) leaves the subspace h invariant and commutes there with
J for every g # K.

Notice that K=[s, e] with arbitrary h/m and arbitrary J always is an
admissible choice. Also, if the compact group K has been chosen, every
closed subgroup of K containing s is again an admissible choice.

Since K is compact there exists an Ad(K)-invariant decomposition
l=k�n, where k is the Lie algebra of K. With p :=n�m therefore we get
the Ad(K)-invariant decomposition g=k�p. Consider the connected
homogeneous G-manifold M :=G�K and declare o :=K # M as base point.
In the following we identify the tangent space ToM in the canonical way
with the Hilbert space p. Denote by 8g the diffeomorphism of M induced
by g, that is,

8g : M � M, hK [ ghK

(we do not require here that the G-action is effective; this could be easily
achieved by reducing out the kernel of ineffectivity from the beginning).
Then for every g # K, the differential do8g is nothing but the restriction of
Ad(g) to p and hence there exists a unique G-invariant almost CR-struc-
ture with HoM=h and also a unique G-invariant Riemannian metric on M
extending the given Hilbert norm of To M=p. In particular, so :=8s is an
involutive isometric diffeomorphism of M with fixed point o. Clearly, so is
a symmetry of M at o if and only if H &1

o M/m, where H &1
o M/To M

is the subspace defined in Section 2. A more convenient condition for this
is given by the following statement.
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6.2. Proposition. Let a and b be the Lie subalgebras of g generated by
m and h, respectively. Then a=[m, m]�m holds, a is an Ad(K)-invariant
ideal of g, and

(i) M is a minimal symmetric CR-manifold with symmetry so at o if
and only if g=k+b.

(ii) In case so :=8s is a symmetry of M at o, the weaker condition
g=k+a holds.

Proof. First notice that [m, m]/l, [l, m]/m by (6.1) and hence
that a=[m, m]�m holds. Obviously, a is invariant under ad(l) as
well as ad(m), i.e., a is an ideal in g. Now suppose that so is a symmetry
of M at o. Then M is a symmetric CR-manifold by the transitivity of the
group G and g=k+a follows as in the proof of Proposition 3.6. Now
suppose in addition that M is minimal as an almost CR-manifold. Define
inductively hk :=hk&1+[h, hk&1] and h0=0. Then hk�hk&1 is isomorphic
to H k

o M and g=k+hk for k sufficiently large, i.e., g=k+b. Conversely,
suppose that g=k+b holds. Then M is minimal and the differential of so

is the negative identity on h=HoM, i.e., so is a symmetry at o. K

As an illustration of the construction principle fix integers p, q�0 with
n := p+q�2 and set G :=SU(n). Then the corresponding Lie algebra
g=su(n) is a real Hilbert subspace of Cn_n. Write every g # Cn_n in the
form ( a

c
b
d) with a, b, c, d matrices of sizes p_p, p_q, q_p, q_q, respec-

tively, and denote by _ the automorphism of G defined by ( a
c

b
d) [ ( a

&c
&b

d ).
Fix a closed subgroup K/F :=Fix(_) and put M :=G�K with base point
o :=K # M. Identify ToM with the orthogonal complement p of k in g and
put HoM :=m :=[( 0

c
b
0) # p]rC p_q with complex structure defined by

( 0
c

b
0) [ ( 0

&ic
ib
0 ). These data give a unique G-invariant Hermitian metric and

a unique G-invariant almost CR-structure on M with gK [ _(g) K a sym-
metry at o # M. It is easily seen that m+[m, m]=g as well as the
integrability condition (2.2) hold, i.e., M is a compact minimal symmetric
CR-manifold with symmetric reduction N :=G�L. Here N is the Grassman-
nian Gp, q of all linear subspaces of dimension p in Cn and in particular is
a symmetric Hermitian space. If we replace G=SU(n) by the group
Gd :=SU( p, q) and define _ by the same formula, then L=Fix(_) remains
unchanged and for every compact subgroup K/L we get the two minimal
symmetric CR-manifolds M=G�K and Md :=Gd�K which we call dual to
each other. In particular, Nd :=Gd�L is a bounded symmetric domain and
is the dual of the Grassmannian Gp, q in the sense of symmetric Hermitian
spaces.
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7. INTEGRABILITY AND COMPLEXIFICATIONS

Assume that M is an arbitrary CR-space with base point o # M, not
necessarily symmetric to begin with. Assume that G is a Lie group acting
smoothly and transitively on M by CR-diffeomorphisms. Let K :=[g # G :
g(o)=o] be the isotropy subgroup at o and denote by k/g the corre-
sponding Lie algebras. Then the canonical map %: g � ToM is surjective
and has k as kernel. Choose a linear subspace h/g such that %: h � HoM
is a linear isomorphism. Then there is a unique complex structure J on h

making %|h complex linear. It is clear that k�h=%&1(HoM) does not
depend on the choice of h.

Let g :=g� ig be the complexification of g and denote for linear sub-
spaces of g its complex linear span by the corresponding boldface letter,
that is, for instance a=a� ia in case of a. The complex structure J of h

extends in a unique way to a complex linear endomorphism J of h. Denote
by h\ the eigenspaces of J in h to the eigenvalues \i: h\=[Jx\ix :
x # h]. Put l :=k�h& for the following. This space does not depend on the
choice of h. The composition of the canonical maps h/�h � h�h& induces
a complex linear isomorphism h$h�h&$h+. As a consequence, g�k/�g�l
realizes ToM=g�k as a linear subspace of the complex vector space g�l in
such a way that there HoM=To M & iToM holds. This property will be the
key in the proof of Proposition 7.3.

7.1. Proposition. The CR-structure of M is integrable if and only if l is
a Lie algebra.

Proof. Let TM be the complexified tangent bundle of M and denote
by D=D� iD the complex Lie algebra of all smooth complexified
vector fields on M, i.e., of all smooth sections M � TM. Then K :=
[X # D : Xo=0] is a complex Lie subalgebra of D. The almost
CR-structure of M gives a complex subbundle H 0, 1M/TM. Denote by
H0, 1/D the linear subspace of all vector fields of type (0, 1), i.e.,
Xa # H 0, 1

a M for all a # M. The integrability conditon for M is equivalent to
H0, 1 being a Lie subalgebra of D. The action of G on M induces a Lie homo-
morphism g � D that uniquely extends to a complex linear homomorphism
.: g � D. The assumption that G acts by CR-diffeomorphisms implies
[.(g), H0, 1]/H0, 1. For L :=K+H0, 1 we have l=.&1(L).

Now suppose that M is integrable. We claim that l is a Lie algebra and
consider arbitrary vector fields X, Y # .(l). It is enough to show for
Z :=[X, Y] that Zo # H 0, 1

o M holds, i.e., that Z is contained in L. Write
X=X$+X", Y=Y$+Y" with X$, Y$ # K and X", Y" # H0, 1. Then we have

[X$, Y"]=[X&X", Y"]#[X, Y"] mod L
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and hence

Z#[X$, Y"]+[X", Y$]#[X, Y"]+[X", Y]#0 mod L. (V)

Conversely, suppose that l is a Lie algebra. Since G acts transitively on M
we have L=K+.(l). We claim that M is integrable. Consider arbitrary
vector fields X, Y # H0, 1 and write X=X$+X", Y=Y$+Y" with
X$, Y$ # K and X", Y" # .(l). We have to show that Z :=[X, Y] is con-
tained in H0, 1. Since G acts transitively on M and leaves H0, 1 invariant it
is enough to show that Zo # H 0, 1

o M holds, i.e., that Z # L. But this follows
as in (V). K

7.2. Corollary. Suppose that M in Proposition 7.1 is symmetric with
G :=GM . Then, if h/g is chosen to be Ad(K)-invariant, M is integrable if
and only if [h&, h&]/k.

Proof. By the choice of h we have [k, h]/h and hence [k, h&]/h&.
The involution Ad(so) of g extends to a complex linear involution { of g
with h/Fix(&{). Therefore, l is a Lie algebra if and only if the inclusion
[h&, h&]/l holds, that is, [h&, h&]/l & Fix({)=k. K

We remark that Proposition 7.1 and Corollary 7.2 remain valid for h+ in
place of h&.

7.3. Proposition. Let M=G�K be a homogeneous CR-manifold as in
Proposition 7.1. Suppose there are given complex Lie groups L/G with Lie
algebras l/g, where l and g=g� ig are as before. Suppose furthermore that
G can be realized as real Lie subgroup G/G in such a way that the corre-
sponding injection g � g is the canonical one and such that GL is locally
closed in G. Then, if L & G=K holds and if L is closed in G, gK [ gL
realizes M as a locally closed generic CR-submanifold of the homogeneous
complex manifold M :=G�L.

Proof. The assumptions guarantee that M is imbedded in M as a
locally closed real-analytic submanifold with HoM=To M & iToM in To M .
The result follows since M is a G-orbit in M . K

In general, the CR-submanifold M is not closed in M . For instance, if M
is a bounded symmetric domain and G=Aut(M) is the biholomorphic
automorphism group of M then M can be chosen to be the corresponding
compact dual symmetric Hermitian manifold which contains M as an open
subset. For the sphere M :=�Bn /Cn and G=AutCR (M) we may choose
M =Pn . On the other hand, for the same sphere M=�Bn but G=U(n) we
may obtain for M the domain Cn"[0] in Cn��but also the Hopf manifold
Cn"[0]�:Z for some complex number : with |:|>1.
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In the following we illustrate the statements of Propositions 7.1, 7.3 and
Corollary 7.2 by various examples. Denote by _ the inner automorphism of
Cn_n given by (aij) [ ((&1) i+ j aij).

7.4. Example. In contrast to symmetric Hermitian spaces, the CR-
structure of a symmetric CR-space does not need to be integrable. For
n�3 let M/Cn_n be the nilpotent subgroup of all unipotent lower tri-
angular matrices, i.e., of all a=(aij) with aii=1 and a ij=0 if i< j. Then for
the identity e # M, the tangent space TeM will be identified with the nilpo-
tent algebra g of all strictly lower triangular matrices. Denote by G the
group generated by all left multiplications with elements from M and
denote the restriction of _ to M by the same symbol. Then G=G0 _ _G0

acts transitively on M and there exists a unique G-invariant Riemannian
metric on M which coincides on TeM with the one inherited from Cn_n.
Also there is a unique G-invariant almost CR-structure on M with

He M=h :=[a # g : aij=0 if j{i+1]

and complex structure on h inherited from Cn_n. With this structure M is
symmetric and minimal. Because of [h&, h&]{0 the CR-structure is not
integrable.

7.5. Example. Let n>d�1 be fixed integers with d�n�2 and denote
by g the space of all matrices in Cn_n having the form (7.6). Also, denote
by h/g the subspace of all matrices with zk=: j=0 for all k>d and all
j. A simple calculation shows that g is a real Lie subalgebra of Cn_n and
that h generates g as Lie algebra. Identifying z=(z1 , ..., zd) # Cd in the
obvious way with the corresponding matrix in h we get a complex structure
J on h/Fix(&_). For all x, y # h the identity [Jx, y]+[x, Jy]=0 is
easily verified. M :=exp(g) is a closed nilpotent subgroup of GL(n, C)
invariant under _. Precisely as in Example 7.4, M becomes a symmetric
minimal CR-manifold. But this time [h&, h&]=0 holds, that is, M is
integrable. Furthermore, }(M)=[(n&1)�(2d&1)] and M has CR-dimen-
sion d.

\
0

0 +
z1 0
:1 z� 1 0
z2 &:1 z1 0 , (7.6)
:2 z� 2 :1 z� 1 0
z3 &:2 z2 &:1 z1 0
b b b b b

. . .

all zk arbitrary complex numbers, all :k purely imaginary.
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Proposition 7.3 gives a prescription for a generic embedding of M. Let G
be the connected, simply connected complex Lie group with Lie algebra
g=g� ig. Then exp : g � G is biholomorphic and in particular, L :=
exp(h&) is a closed abelian complex subgroup of G��notice that we have
k=0 in this case. Now, M embeds in the canonical way into the complex
manifold M :=G�L which is biholomorphic to the complex vector space
g�h&. Easy for explicit calculations is the case n odd��then g & ig=0 holds
in Cn_n and we can realize the complexification g within the complex
Lie algebra Cn_n. The commutative subalgebra h& then consists of all
matrices obtained from (7.6) by keeping all z� 1 , z� 2 , ..., z� d and replacing
all other entries (including all zk) by 0. For n=3, d=1 we find the
realization

M$[(z, w) # C2 : w+w� =zz� ]

which is the classical Heisenberg group; compare Example 3.11. For n=5,
d=1 one can show

M$[(z, w, v1 , v2 , u) # C5 : w+w� =zz� , v1&v� 2=zz� (z&z� )�6+w� z,

u+u� =ww� +(zv� 1+z� v1)+zz� zz� �4]

which is a symmetric CR-manifold with CR-dimension 1, CR-codimension
4, and }(M)=4; compare also Example 3.13. The symmetry at the origin
is given by (z, w, v1 , v2 , u) [ (&z, w, &v1 , &v2 , u).

7.7. Example. Fix an integer k>1 and consider in C2 the connected
CR-submanifold

M :=[(s, v) # C2 : |s|2k&|v| 2=1

which is a k-fold cover of the symmetric CR-manifold R in Example 4.3 via
the map (s, v) [ (sk, v). Therefore also M is a symmetric CR-manifold and
G0

M is a k-fold covering group of G0
R=SU(1, 1)$SL(2, R). Denote by g

the Lie algebra of GM . Then it is known that for g=g� ig there does not
exist any complex Lie group G into which G admits an embedding induced
by the canonical injection g/�g. Therefore the conclusion of Proposi-
tion 7.3 cannot hold for this example.

The group G0
M consists of all transformations

(s, v) [ ((ask+bv)1�k, b� s+a� v),
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where a, b # C satisfy aa� &bb� =1. It follows that the action of GM does not
extend to all of C2. But it extends to the domain

D :=[(s, v) # C2 : |v|<|s| k]=R+M

on which the group R+_G0
M acts transitively and freely.

8. CR-MANIFOLDS DERIVED FROM BOUNDED
SYMMETRIC DOMAINS

Suppose that E is a complex vector space of dimension n and that D/E
is a bounded symmetric domain. Then Aut(D) is a semi-simple Lie group
and at every point of D the corresponding isotropy subgroup is a maximal
compact subgroup (see f.i. [14]). It is known that there exists a complex
norm & }&� on E such that D can biholomorphically be realized as the
open unit ball

D=[z # E : &z&�<1] (8.1)

with respect to this norm and that any two realizations of this type are
linearly equivalent. In this realization the isotropy subgroup at the origin
is linear, i.e.,

[g # Aut(D) : g(0)=0]=GL(D).

Moreover, GL(D) is compact. Therefore there exists a GL(D)-invariant
complex Hilbert norm & }& on E that we fix for the sequel and hence con-
sider E as a complex Hilbert space in the following. We will also always
assume that D is given in the form (8.1). For shorter notation we use for
the whole section the abbreviation

1 :=Aut(D)0 and K :=GL(D)0.

As a generalization of (4.1) there exists a compact complex manifold Q
with

D/E/Q and Aut(D)=[g # Aut(Q) : g(D)=D]. (8.2)

Q is the dual of D in the sense of symmetric Hermitian manifolds and
Aut(Q) is a complex Lie group acting holomorphically and transitively on
Q. The domain E is open and dense in Q and the set Q"E of the ``points
at infinity'' is an analytic subset of Q, but not a complex submanifold in
general.
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The boundary �D of D is smooth only in the very special case, where
also & }&� is a Hilbert norm. Nevertheless, �D is a finite union of 1-orbits,
which are locally closed CR-submanifolds of E. Every K-orbit M in �D is
an Hermitian CR-submanifold of E with respect to the metric induced from
E, where K acts by CR-isometries. We start with an orbit of a special
nature: Denote by S=S(D) the set of all extreme points of the closed con-
vex set D� . The following two statements are well known, but will also be
obvious from our discussion below.

8.3. Lemma. S is a connected generic CR-submanifold of E. Moreover, S
is the only compact 1-orbit in D� , consists of all e # D� with K(e)=1(e), and
coincides with the Shilov boundary of D.

8.4. Lemma. The CR-submanifold S is totally real if and only if D is
biholomorphically equivalent to a ``tube domain'' [z # Cn : Re(z) # 0], where
0/Rn is an open convex cone. In this case D is said to be of tube type.

A bounded symmetric domain D is called irreducible if it is not
biholomorphically equivalent to a direct product of complex manifolds of
lower dimensions. This is known to be equivalent to K/GL(E) acting
irreducibly on E. There exists (up to order) a unique representation of D
as direct product D=D1_ } } } _Dk , where all Dj are irreducible bounded
symmetric domains and are of the form Dj=Ej & D for linear subspaces
Ej /E with E=E1 � } } } �Ek . Also, there exist direct product representa-
tions S(D)=S(D1)_ } } } _S(Dk) for the Shilov boundaries and K=
GL(D1)0_ } } } _GL(Dk)0. We call the Dj the factors of D.

We are now able to formulate the main result of this section.

8.5. Theorem. Let D be a bounded symmetric domain. Then the Shilov
boundary S of D is a symmetric CR-manifold and the following conditions
are equivalent.

(i) The Levi cone of S has non-empty interior at every point.
(ii) S is a minimal CR-manifold.

(iii) Every smooth CR-function f on S has a unique holomorphic exten-
sion to D that has the same smoothness degree on D� as f.

(iv) Aut(D)=AutCR (S).

(v) D does not have a factor of tube type.

For the proof (8.16) we use the Jordan theoretic approach to bounded
symmetric domains as originated by Koecher [17]; for details in the
following always compare [21]. There exists a Jordan triple product
E3 � E, (x, y, z) [ [xyz], that contains the full structural information of D.
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This triple product is symmetric bilinear in the outer variables x, z,
conjugate linear in the inner variable y, and satisfies certain algebraic and
spectral properties. The group GL(D) of all linear & }&� -isometries of E
coincides with the group of all linear triple automorphisms, more precisely

GL(D)=[g # GL(E) : g[xyz]=[gx gy gz] for all x, y, z # E].

An element e # E is called a tripotent if [eee]=e holds. The set Tri(E)
of all tripotents in E is a compact real-analytic submanifold of E and the
group K acts transitively on every connected component of Tri(E). Except
for [0] every other connected component of Tri(E) has positive dimension
and is contained in �D. Tripotents may also be characterized geometrically
as ``affine symmetry points'' of D� in the following sense.

8.6. Proposition. The element a # D� is a tripotent if and only if there
exists an operator _ # GL(D) with

(i) _(a)=a,

(ii) _(v)=&v for all v # E with &a+tv&�1 for all t # T.

We will postpone the proof of this criterion and fix a tripotent e # E for
a moment. The triple multiplication operator +=+e # L(E) defined by
z [ [eez] is Hermitian and splits E into an orthogonal sum E=E1 �

E1�2 �E0 of eigenspaces to the eigenvalues 1, 1�2, 0, called the Peirce
spaces of the tripotent e. The canonical projection Pk : E � Ek maps D into
itself and clearly is a polynomial in +, more precisely

P1=+(2+&1), P1�2=4+(1&+), P0=(1&+)(1&2+). (8.7)

The ``Peirce reflection'' \ :=exp(2?i+)=P1&P1�2+P0 is contained in K,
fixes e, and leaves Tri(E) invariant. In particular, also the projection
P1+P0 maps D into itself.

The tripotent e{0 is called minimal if E1=Ce holds and is called maxi-
mal if E0=0 holds. For instance, the Shilov boundary S of D is just the set
of all maximal tripotents. E becomes a complex Jordan algebra (depending
on the tripotent e) with respect to the commutative product a b b :=[aeb],
and e2 :=e b e=e is an idempotent in E. The Peirce space E1 is a unital
complex Jordan subalgebra with identity element e and conjugate linear
algebra involution z [ z* :=[eze]. For every a # E1 and powers induc-
tively defined by ak+1 :=ak b a, a0 :=e, the linear subspace C[a]/E1 is a
commutative, associative subalgebra (notice that the Jordan algebra E1 is
not associative in general). The element a # E1 is called invertible if a has an
inverse a&1 # C[a]. The selfadjoint part A :=[z # E1 : z*=z] of E1 is a
formally real Jordan algebra, i.e., a real Jordan algebra such that
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x2+ y2=0 implies x= y=0 for all x, y # A. Clearly, E1=A� iA holds
since the involution is conjugate linear. For all z # E1 we denote by
Re(z) :=(z+z*)�2 # A the real part of z. The set Y :=[a2 : a # A] of all
squares in A is a closed convex cone with A=Y&Y and Y & &Y=[0].
The interior

0 :=Interior of Y

coincides with exp(A)/A and also with the set of all a # Y that are inver-
tible in A. 0 is an open convex linearly homogeneous cone in A. The
sesqui-linear mapping 8: E1�2 �E1�2 � E defined by 8(u, v)=2[euv] takes
values in E1 and satisfies 8(z, z) # 0� for all z # E1�2 , and 8(u, u)=0 if and
only if u=0. To indicate the dependence on the tripotent e # E we also
write Ek(e), k=1, 1�2, 0, for the Peirce spaces as well as A(e), Y(e), 0(e),
\e , and 8e . Let us illustrate these objects by a typical example.

8.8. Example. Fix arbitrary integers p�q�1 and consider the com-
plex Hilbert space E :=C p_q of dimension n= pq. Then D :=[z # E : 1&
z*z>0] is a bounded symmetric domain in E, where 1=1q is the q_q-
unit matrix. &z&2

� is the largest eigenvalue of the Hermitian matrix z*z, i.e.,
&z&� may be considered as the operator norm if z is considered as
operator Cq � C p. The triple product is given by [xyz]=(xy*z+zy*x)�2
and K/GL(E) is the subgroup of all transformations z [ uzv with
u # U( p) and v # U(q). The Hilbert norm on E given by &z&2=tr(z*z) is
K-invariant. Tri(E) is the disjoint union of the K-orbits S0 , S1 , ..., Sq , where
Sk is the set of all tripotents e # E that have matrix rank k. In particular,
if we write every z # E as block matrix ( a

c
b
d) with a # Ck_k and matrices

b, c, d of suitable sizes, then e=( 1q
0

0
0) is a tripotent in Sk . The correspond-

ing Peirce spaces E1 , E1�2 , and E0 consist of all matrices of the forms ( a
0

0
0),

( 0
c

b
0), and ( 0

0
0
d), respectively. Furthermore, A is the real subspace of all

Hermitian matrices in E1 and 0/A is the convex cone of all matrices ( a
0

0
0)

with a # Ck_k positive definite Hermitian. For every u=( 0
c

b
0) # HeSk we

have 8e(u, u)=2[euu]=( a
0

0
0) with a=bb*+c*c. Finally, S=Sq is the

Shilov boundary of D. S consists of all matrices in E whose column vectors
are orthogonal in C p, or equivalently, which represent isometries Cq � C p.
The group 1 is the set of all transformations

z [ (:z+;)(#z+$)&1 with \:
#

;
$+ # SU( p, q)

and :, ;, #, $ matrices of sizes p_p, p_q, q_p, and q_q, respectively. In
case p=q>1 the groups GL(D) and Aut(D) have two connected com-
ponents; in all other cases these groups are connected. For the special case
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q=1 we get for D the euclidean ball B in E=C p with Shilov boundary the
unit sphere S=S1=�D as studied in Example 4.2. For every e # S then
E1(e)=Ce holds and E1�2(e) is the orthogonal complement of e in the
Hilbert space E.

Two tripotents e, c # E are called (triple) orthogonal if c # E0(e) holds.
Then also e # E0(c) is true and e\c are tripotents. An ordered tuple
(e1 , e2 , ..., er) of pairwise orthogonal minimal tripotents in E is called a
frame in E if there does not exist a minimal tripotent e # E that is
orthogonal to all ej in the triple sense. All frames in E have the same length
r, which is called the rank of the bounded symmetric domain. Every
element a # E has a representation

a=*1e1+*2e2+ } } } +*rer , &a&�=*1�*2� } } } �*r�0, (8.9)

where (e1 , e2 , ..., er) is a frame depending on a. The real numbers * j=*j (a)
are uniquely determined by a and are called the singular values of a. In
general, the frame (e1 , e2 , ..., er) is not uniquely determined by a. For every
a # D� there is a unique representation

a=e+u with e=: =(a) # Tri(E) and u # D & E0(e). (8.10)

The Shilov-boundary of D is given by

S=[a # E : *1(a)=*2(a)= } } } =*r(a)=1]. (8.11)

In case D is irreducible, the compact group K acts transitively on the set
of all frames and hence any two elements a, b # E are in the same K-orbit
if and only if *j (a)=*j (b) holds for all j.

These considerations can be used to prove the following property.

8.12. Proposition. If S is totally real, it is rationally convex.

Proof. For every e # S, the Jordan algebra E=E1(e) has e as the unit
element. It is known (compare for instance [11, 22]) that there exists a
unique homogeneous polynomial function N: E � C of degree r such that
the following is satisfied:

(i) z # E is invertible if and only if N(z){0 and (ii) N(e)=1.

N is called the (generic) norm of the unital Jordan algebra E. It is known
that there exists a character /: K � T such that N(gz)=/(g) N(z) holds for
all g # K and all z # E. On the other hand, for every frame (e1 , ..., er) in E
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with e1+ } } } +er=e and every complex linear combination z=z1e1+
} } } +zrer we have N(z)=z1 z2 } } } zr . This implies the following charac-
terization of the Shilov boundary in the tube type case.

S=[z # D� : |N(z)|=1].

In particular, for every a # D� "S, the rational function (N&N(a))&1 is
holomorphic in a neighbourhood of S and has no holomorphic extension
to a, i.e., the rational convex hull of S in E coincides with S. K

The Shilov boundary S of D in Example 8.8 is totally real if and only if
p=q holds, and then S=U(q) is the unitary group. For the unit matrix
e # E=Cq_q the Jordan product on E is given by a b b=(ab+ba)�2 and
invertibility in the Jordan sense is the same as in the associative sense. In
particular, N(z)=det(z) is the norm of E.

8.13. Proof of Proposition 8.6. In case a is a tripotent, every v # E with
&a+tv&�1 for all t # T is contained in E0(a) and we may take _ :=
&exp(?i+a)=P1&iP1�2&P0 # K, where +a is the triple multiplication
operator z [ [aaz] on E. Conversely, suppose that a satisfies Proposi-
tion 8.6(i)�(ii) and write a=e+u as in (8.10). Then _(u)=&u follows
from the assumptions. For every t>1 with tu # D� we have a&(1+t) u=
e&tu # D� and hence _(a&(1+t) u)=e+(2+t) u # D� , i.e., (t+2) u # D�
and hence u=0. Therefore, a=e is a tripotent. K

Fix a frame (e1 , e2 , ..., er) in E and consider for all integers 0�i, j�r,
the refined Peirce spaces,

Eij :=[z # E : 2[ekek z]=($ik+$kj) z for 1�k�r].

Then, if we put e0 :=0,

E= �
0�i� j�r

Eij , Eii=Ce i , and [EijEjk Ekl]/E il

hold for all 0�i, j, k, l�r. Also, [Eij EklE]=0 if the index sets [i, j] and
[k, l] are disjoint. Furthermore, D has no tube type factor if and only if
Ei0 {0 for 1�i�r. To indicate the dependence of Eij on the given frame
we also write Eij (e1 , e2 , ..., er).

Now consider a 1-orbit 7/D� . Then it is known that there is a tripotent
e in E with 7=1(e) and that Te7=iA�E1�2 �E0 is the tangent space at
e # 7, where the Peirce spaces refer to the tripotent e. This implies that 7
is a homogeneous generic locally closed CR-submanifold of E with
holomorphic tangent space He7=E1�2 �E0 . The orbit M :=K(e) is a
compact submanifold of 7 with tangent space TeM=iA�E1�2 and
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holomorphic tangent space HeM=E1�2 . Furthermore, M=7 & Tri(E) and
=: 7 � M (compare (8.10)) is a fibre bundle with typical fibre D & E0 .

8.14. Lemma. Every connected component M of Tri(E) is a symmetric
CR-manifold.

Proof. Fix an arbitrary element e # M. For the decomposition of D into
a direct product D1 _ } } } _Dk of irreducible factors we get a decomposi-
tion e=e1+ } } } +ek with tripotents ej # Ej and a decomposition M=
M1_ } } } _Mk with Mj=GL(Dj)

0 (ej), that is, we may assume without loss
of generality that D is irreducible. To begin with, suppose that M is totally
real, i.e., E1�2=0. Then, by irreducibility, also E0=0 holds and
M=exp(iA) is the ``generalized unit circle'' in E1=E. Furthermore,
se(z)=z* leaves M invariant and hence is a symmetry of M at e, i.e., M is
symmetric in this case. Now suppose, that M is not totally real, i.e.,
He M=E1�2 {0. Then the Peirce reflection \e maps M into itself and
satisfies HeM/Fix(&\e). Therefore, as soon as we know that M is a mini-
mal CR-manifold we know that \e is a symmetry of M at e and hence that
M is symmetric. For the minimality of M it is enough to show that
H 2

e M=iA holds, where H 2
e M is as in Section 2. But this is a consequence

of the following Proposition 8.15. K

8.15. Proposition. Let e be a tripotent in E and denote by M the con-
nected e-component of Tri(E). Then H 2

e M/iA(e) and the Levi form
E1�2(e)_E1�2(e) � E1(e) of M at e is given by (u, v) [ &2[euv], i.e.,
Le=&8e . In case D has no tube type factor, the convex hull of
[8e(u, u) : u # E1�2(e)] in A(e) has the cone &0(e) as interior and then, in
particular, H 2

e M=iA(e) holds.

Proof. For every u # HeM=E1�2(e) define the vector field Xu on E by
Xu

a=4[aau]&4[aa[aau]] for all a # M. Then X u
e=u and X u

a # Ha M for
all a # M by (8.7). A simple calculation gives [Xu, X v]e=2[evu]&
2[euv] # iA(e). This shows that &8e is the Levi form at e # M. Let C be
the convex hull of [8e(u, u) : u # E1�2(e)]. Then C/0� (e) is clear. For the
proof of the opposite inclusion fix at arbitrary element a # 0� (e). Then there
exists an integer k�r and a representation a=*1e1+ } } } +*kek , where
(e1 , ..., ek) is a family of pairwise orthogonal minimal idempotents in the
formally real Jordan algebra A(e) summing up to e and where all coef-
ficients *j are �0. This means that we only need to show that ej # C for
1� j�k. For this we extend (e1 , ..., ek) to a frame (e1 , ..., er) of E and fix
j�k. Since by assumption D has no tube type factor we have Ej0 {0. But
then 8e(u, v)=2[ejuu] cannot vanish for all u, v # Ej0 since otherwise there
would exist a tripotent c{0 in Ej0 that is orthogonal to all ei , 1�i�r.
This implies ej # C. K
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8.16. Proof of Theorem 8.5.

Proof. S is symmetric by Lemma 8.14 since S is a connected component
of Tri(E). Fix an element e # S. Then with Q as in (8.2) there exists an
automorphism # # Aut(Q), called Cayley transformation, mapping D
biholomorphically onto the Siegel domain

H :=[(t, v) # E1 �E1�2 : t+t� &8(v, v) # 0]

in E=E1 �E1�2 , where the Peirce spaces Ek , the cone 0/A, and the
Hermitian map 8: E1�2_E1�2 � E1 refer to the tripotent e. The transforma-
tion # satisfies #4=id, S & Fix(#)=[\ie], #(&e)=0, and is given by

#(t, v)=((e&t)&1 b (e+t), - 2(e&t)&1 b v),

where (e&t)&1 is the inverse in the unital Jordan algebra E1 . The domain

V :=[(t, v) # S : (e&t) is invertible in E1]

is dense in S and # defines a CR-diffeomorphism from V onto the CR-sub-
manifold

N :=[(t, v) # E1 �E1�2 : t+t� =8(v, v)]/�H

of E, compare also Example 4.5.

(i) O (ii). This is an immediate consequence of the definitions (see
Definition 2.3) and holds for every CR-manifold.

(ii) O (iii). Suppose S is minimal. Since the Shilov boundary of a
bounded symmetric domain of tube type is totally real, D cannot have a
factor of tube type. Then by Proposition 8.15, the interior of [8(v, v) : v #
E1�2]=[L(v, v) : v # E1�2] coincides with the cone 0, where L denotes the
Levi form of N at 0 with respect to the obvious identification (T0 N�
H0 N)�C$E1 . Let v # 0 be an arbitrary vector. By the extension result of
[10], every CR-function f on N extends holomorphically to a small wedge
in the direction v, in particular, to a neighbourhood of a subset of the type
(N+R+ v) & U, where U is a neighbourhood of 0 in E1 �E1�2 . Further-
more, the wedge extension is of the same smoothness degree as f (due to
[4], see also [5, Theorem 7.5.1], since f is of slow growth by the Cauchy
estimates). Using the transformations (t, v) [ (st, s2v), s>0, we see that f
automatically extends to a neighbourhood of (N+R+ v). Since v # 0 is
arbitrary, f extends holomorphically to the whole of H. This implies via the
Cayley transformation that every CR-function f on S has a smooth exten-
sion to D & S which is holomorphic on D. It remains to prove that the
extension of f is of the same smoothness degree on the boundary �D. For
every 0<r<1, define the continuous function fr on D� by fr(z) := f (rz).
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Then for r � 1, the functions fr converge uniformly on S to f. Since S is the
Shilov boundary of D the convergence is also uniform on D� , i.e., f extends
continuously to D� . The smoothness is obtained by the same argument
applied to the partial derivatives.

(iii) O (iv). Aut(D)/AutCR (S) follows from (8.2). Assume (ii) and
consider a transformation g # AutCR (S). Then g extends to a continuous
mapping g: D� � E which is holomorphic on D. As a consequence of the
maximum principle, g(D� ) is contained in the closed convex hull of
g(S)=S, which is D� . By the same argument, h := g&1 extends to a con-
tinuous map h: D� � D� which is holomorphic on D. Then h b g= g b h=id
shows g # Aut(D).

(iv) O (v). Suppose D has a factor of tube type. Then S is a direct
product of a CR-manifold with a totally real CR-manifold of positive
dimension. In particular, AutCR (S) cannot be a Lie group of finite dimen-
sion like Aut(D).

(v) O (i). This follows from Proposition 8.15. K

Theorem 8.5 together with Proposition 8.12 can be used to calculate
both polynomial and rational convex hulls of S explicitly. In particular,
they are finite unions of disjoint connected real-analytic CR-submanifolds
(forming a stratification in the sense of Whitney). We call a smooth
function on such a union a CR-function if it is CR on each single
CR-submanifold (this notion is independent of the partition into CR-sub-
manifolds).

8.17. Corollary. Let E=E1 �E2 be the canonical splitting such that
D1 :=D & E1 is of tube type and D2 :=D & E2 has no tube type factor.
Denote by S1 /�D1 and S2 /�D2 the corresponding Shilov boundaries. Then
the following holds.

(i) Both convex and polynomial convex hulls of S coincide with D� .

(ii) The rational convex hull S� of S is given by S� =S1 _D� 2 .

(iii) Every smooth CR-function f on S extends uniquely to a CR-func-
tion on S� of the same smoothness degree.

Proof. Since S is the Shilov boundary of D, |P(z)|�&P&S holds for
every holomorphic polynomial P and every z # D� . Hence D� is contained in
the polynomial convex hull of S. The latter is always contained in the con-
vex hull of S, which is D� . This proves (i) (the statement about the convex
hull also follows from the classical Krein�Milman theorem).

For the rational convex hull, we obtain S� 1=S1 by Proposition 8.12. This
shows S� /S1_D� 2 . On the other hand, every rational function on E2 ,
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holomorphic in a neighbourhood of S2 , is continuous on D� 2 by
Theorem 8.5. This implies the opposite inclusion S� #S1_D� 2 and therefore
(ii).

Finally, let f be a CR-function on S. Then, for every z1 # S1 , Theorem 8.5
guarantees that f has a unique smooth extension f� to [z1]_D� 2 which is
holomorphic on [z1]_D2 . By the smoothness, f� is CR on each CR-sub-
manifold of the boundary [z1]_�D2 . To prove the smoothness of f� on S� ,
we fix a convergent sequence zm

1 � z0
1 . Then f� (zm

1 , } ) converges to f� (z0
1 , } )

uniformly on S2 and therefore on �D2 , because S2 is the Shilov boundary.
This shows that f� is continuous. The same argument applied to the partial
derivatives of f� shows that f� is of the same smoothness degree as f. Since
S1 is totally real, the holomorphic tangent spaces to every CR-submanifold
of S� are contained in E2 . This shows that f� is CR and finishes the proof of
(iii). K

From the classification of all irreducible bounded symmetric domains
into the 6 types I, II, ..., VI (compare f.i. [21, p. 4.11]) it follows that there
are precisely the following 3 types of irreducible non-tube domains:

Iq, p with p>q�1 arbitrary integers. Then, as in Example 8.8,
E=C p_q and D=[z # E : 1&z*z>0] is the bounded symmetric domain
of rank r=q, where 1 is the q_q-unit matrix. The Shilov boundary of D
is the set S :=Sq of all matrices in E whose column vectors are orthogonal
in C p, i.e.,

S=[z # C p_q : z*z=1]. (8.18)

On S the group SU( p) acts transitively by matrix multiplication from the
left with isotropy subgroup 1_SU( p&q) at e :=( 1

0) # S, i.e., S=SU( p)�
(1_SU( p&q)) is simply connected, has CR-dimension ( p&q) q and
CR-codimension q2. Also, AutCR (S)rU( p, q)�T is connected. Every
closed subgroup L/U(q) acts freely on S by matrix multiplication from
the right and S�L again is a symmetric CR-manifold of the same
CR-dimension in a natural way. For L=U(q) we get the Grassmannian of
all q-planes in C p which is the reduction of S as defined in Section 5. The
typical fibre of the reduction map is the group U(q).

IIp with p=2q+1 an arbitrary odd integer >3. Let E :=
[z # C p_p : z$=&z] and define the bounded domain D/E as well as the
Jordan triple product by the same formulae as for Ip, q . Then again D is a
bounded symmetric domain of rank r=q and 1/GL(E) is the group of all
transformations z[uzu$ with u # U( p). For j :=( 0

&1
1
0) # C2q_2q the matrix

e :=( j
0

0
0) # C p_p is in S :=Sq and 1 has isotropy subgroup Sp(q)_T at e.

Therefore S=SU( p)�(Sp(q)_1) is simply connected. The holomorphic
tangent space HeS is the space of all z=( 0

v
u
0) # E with u=&v$ # C2q, i.e.,
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S has CR-dimension 2q and CR-codimension q(2q&1). The reduction is
the projective space P2q(C)=SU( p)�S(U(2q)_T) and SU(2q)�Sp(q) is the
typical reduction fibre. The group AutCR (S)rSO*(2p)�[\1] is connected
(compare [14, pp. 451 and 518] for the non-compact type D III).

V. Here D is the exceptional bounded symmetric domain of dimen-
sion 16 (non-compact type E III on p. 518 of [14]). D has rank 2 and the
Shilov boundary S :=S2 has CR-dimension 8 and CR-codimension 8. On
S the group Spin(10) acts transitively and the reduction S� of S is the sym-
metric Hermitian manifold SO(10)�(SO(2)_SO(8)), the complex non-
singular quadric of dimension 8. The group AutCR (S) is a non-compact
simple exceptional real Lie group of type E6 and has dimension 78.

As a generalization of Example 4.3 also the dual of (8.18) (compare (4.4)
and Section 6) can be described explicitely. Fix e=( 1

0) # S and denote by
\=\e the corresponding Peirce reflection of E=C p_q. Then Fix(\)=Cq_q

and Fix(&\)=C( p&q)_q. On

R=[z # C p_q : \(z)* z=1]

the group U(q, p&q) acts transitively from the left with compact isotropy
subgroup 1_U( p&q) at e. Therefore there is a unique U(q, p&q)-
invariant Riemannian metric on R which coincides on TeR with the one
induced from E. The restriction of \ to R is a symmetry of R at e, i.e., is
a symmetric CR-manifold. Again, every closed subgroup L/U(q) acts
freely on R from the right and S�L is a symmetric CR-manifold of the same
CR-dimension. For L=U(q) we get the bounded symmetric domain of
type Iq, p&q , the reduction of R.
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