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DECOMPOSITION OF CR-MANIFOLDS AND SPLITTING OF CR-MAPS

ATSUSHI HAYASHIMOTO, SUNG-YEON KIM AND DMITRI ZAITSEV

Abstract. We show the uniqueness of local and global decompositions of abstract CR-manifolds
into direct products of irreducible factors and splitting property for their CR-diffeomorphisms into
direct products with respect to these decompositions. The assumptions on the manifolds are finite
nondegeneracy and finite type on a dense subset. In the real-analytic case, these are the standard
assumptions that appear in many other questions. In the smooth case, the assumptions cannot
be weakened by replacing “dense” with “open” as is demonstrated by an example. An application
to the cancellation problem is also given. The proof is based on the development of methods of
[BER99b, BRZ00, KZ01] and the use of “approximate infinitesimal automorphisms” introduced in
this paper.
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1. Introduction

Decompositions of various types of manifolds into direct products of submanifolds play an im-
portant role in their study. For instance, for semisimple Lie groups and for symmetric spaces, such
decompositions are crucial for the classification. In Riemannian geometry such a decomposition is
known as de Rham decomposition (see [KN96]). In all these cases the corresponding decomposi-
tion is unique unless there are present so-called “flat factors” whose classification is simple. Most
geometric and functional-theoretic questions for the manifolds then are reduced to the irreducible
factors.
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In this paper we study local decompositions of germs of (abstract) CR-manifolds into irreducible
factors as well as their global analogues and establish their uniqueness. Here the role of “flat
factors” is played by Levi-flat directions, where, in general, “higher order Levi forms” have to be
taken into account. The simplest example is given by the Levi-flat manifold M = R×C where the
choice of the factor R is obviously not unique. There are different known nondegeneracy conditions
to exclude such phenomenon, most of them are usually formulated for real-analytic CR-manifolds.
Those that seem to be the easiest to transfer to the smooth case and also the easiest to compute
are the condition of finite nondegeneracy (see [H83, BHR96, E98]) and of finite type (in the sense
of Kohn [K72] and Bloom-Graham [BG77]). We refer to §2 for main definitions and mention
here only that finite nondegeneracy and finite type are implied respectively by the nondegeneracy
of the Levi form and by the condition that the span of all Levi form values is of maximal possible
dimension.

Our main result states that, in order to have the unique decomposition property, it is sufficient
to require finite nondegeneracy and finite type only on a dense subset. In this paper “smooth”
will always mean C∞. A germ of a smooth CR-manifold is called irreducible, if it is not CR-
diffeomorphic to a direct product of two germs of smooth CR-manifolds of positive dimension. We
prove:

Theorem 1.1. Let (M, p) be a germ of a smooth CR-manifold which is finitely nondegenerate and
of finite type on a dense subset. Then, up to permutations, there exists a unique decomposition

(M, p) ∼= (M1, p1) × · · · × (Mm, pm),

where each germ (Mj, pj) is irreducible. Furthermore, if f is a (germ of a) smooth local CR-
diffeomorphism between (M, p) and another (germ of a) smooth CR-manifold (M ′, p′) and if
(M ′, p′) ∼= (M ′

1, p
′
1) × · · · × (M ′

m′ , pm′) is the corresponding decomposition into irreducible fac-
tors, then m = m′ and, after a permutation of the factors (M ′

j, p
′
j), f factors as a direct product of

the form f = f 1×· · ·×fm, where f j : (Mj, pj) → (M ′
j, p

′
j) are (germs of) local CR-diffeomorphisms

for j = 1, . . . , m.

If M is real-analytic, the assumption of finite nondegeneracy on a dense subset in Theorem 1.1
is equivalent to holomorphic nondegeneracy of its local analytic CR-embedding, i.e. to the nonex-
istence of holomorphic local one-parameter automorphism group (see [BER96, BER99a]). This
assumption is optimal for points in general position in the following sense. If there is no dense
subset where M is finitely nondegenerate, then the existence of a local one-parameter automor-
phism group implies that at a point of general position M is locally CR-isomorphic to a product of
C and another CR-manifold. In this case it is easy to see that the decomposition in Theorem 1.1
at such a point is never unique.

If, on the other hand, there is no dense subset where M is of finite type, the situation is reduced
to the finite type case by considering the CR-orbits (see [N66, S73, BER99a]).

In case M is real-analytic, the assumptions in Theorem 1.1 are clearly equivalent to M being
finitely nondegenerate and of finite type at some sequence of points converging to p. If M is
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merely smooth, the second condition is essentially weaker and is not sufficient for the conclusion
of Theorem 1.1 to hold as Example 2.1 below shows.

Our next result is the following global version of Theorem 1.1. Here we call a CR-manifold
(globally) irreducible if it is not CR-diffeomorphic to a direct product of two smooth CR-manifolds
of positive dimension.

Theorem 1.2. Let M be a smooth CR-manifold which is finitely nondegenerate and of finite type
on a dense subset. Then, up to permutations, there exists a unique decomposition

M ∼= M1 × · · · ×Mm,

where each Mj is irreducible. Furthermore, if f is a smooth CR-diffeomorphism between M and
another smooth CR-manifold M ′ and if and M ′ ∼= M ′

1 × · · · ×M ′
m′ is the corresponding decompo-

sition, then m = m′ and after a permutation of factors of M ′, f factors as a direct product of the
form f = f 1 × · · · × fm, where f j : Mj →M ′

j are smooth CR-diffeomorphisms.

Again, also here Example 2.1 shows that in the assumptions cannot be weakened by replacing
a dense subset by an open subset. As immediate applications of Theorems 1.1 and 1.2 we obtain
the following cancellation result:

Corollary 1.3. Let M1, M2 and S be CR-manifolds that are finitely nondegenerate and of finite
type on their dense subsets. If M1 × S and M2 × S are CR-diffeomorphic, then M1 and M2 are
also CR-diffeomorphic. Furthermore, if for some points p1 ∈ M1, p2 ∈M2, s ∈ S, (M1, p1)× (S, s)
and (M2, p2)× (S, s) are CR-diffeomorphic, then also (M1, p1) and (M2, p2) are CR-diffeomorphic.

A key ingredient of the proofs of Theorems 1.1 and 1.2 consists in establishing a rigidity property
for local CR-diffeomorphisms (Proposition 4.1) that roughly states that, under the assumptions
of Theorem 1.1, any smooth family of local diffeomorphisms that is CR in all arguments, is nec-
essarily constant. The proof of this fact is based on a realization of the space of infinitesimal
CR-automorphisms as a totally real subspace in a suitable jet space. For (not infinitesimal) CR-
automorphisms of real-analytic CR-manifolds fixing a reference point, such a realization has been
obtained by Baouendi-Ebenfelt-Rothschild [BER99b, Theorem 4]. The method of [BER99b]
is based on the local complexification of real-analytic CR-manifolds that may not exist for general
abstract CR-manifolds as in our case. In [KZ01] the second and the third authors proposed a
method of an approximate local complexification that has been used to obtain jet parametriza-
tions of local CR-automorphisms and even of local automorphisms that are CR only up to some
finite order. Using this method we can reduce the problem to the real-analytic case but, as in
[KZ01], after such a reduction we have to consider not only infinitesimal CR-diffeomorphisms of

the corresponding submanifold M̃ ⊂ CN but also more general holomorphic vector fields that pre-

serve M̃ only up to finite order (at the reference point). We call these vector fields “approximate
infinitesimal automorphisms”. In contrast to usual infinitesimal automorphisms, the local flow of
an approximate infinitesimal automorphism may not consist even of approximate automorphisms

since they may not send the reference point into a point of M̃ . Thus we cannot reduce the problem
to (not infinitesimal) automorphisms and instead adapt the technique of [BER99b, BRZ00, KZ01]
directly to our case.
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An outline of the paper is as follows. In §2 we review basic facts and definitions for CR-manifolds
and give an example showing that the assumption of finite nondegeneracy and of finite type in
Theorems 1.1 and 1.2 cannot be replaced by the same assumptions on a sequence of points. In
§3 we define approximate infinitesimal automorphisms and establish their totally real realizations
in jet spaces. In §4 we prove the rigidity property for local CR-automorphisms mentioned above.
Finally, §5 and §6 are devoted to the proofs of Theorems 1.1 and 1.2. The arguments in these
parts are partially inspired by [U81].

2. Preliminaries and an example

Recall that an (abstract) smooth CR-manifold is a smooth manifold M together with an involu-
tive subbundle T 0,1M of the complexified tangent bundle TM ⊗C such that T 0,1M ∩ T 1,0M = 0,
where T 1,0M = T 0,1M . (Involutivity means here that Lie brackets of vector fields in T 0,1M are
again in T 0,1M .) Instead of prescribing T 0,1M one can also consider a real subbundle T cM of
TM together with a complex structure J on T c

pM for each p ∈ M depending smoothly on p. The

relation between T 0,1M and (T cM,J) is given by T 0,1M = {ξ + iJξ : ξ ∈ T cM}. The reader is
referred to the books [B91, BER99a] for basic properties of CR-manifolds.

A CR-manifold M is said to be of finite type at a point p (in the sense of Kohn [K72]
and Bloom-Graham [BG77]) if all vector fields in T 0,1M and T 1,0M span together with their
commutators the maximal possible space TpM ⊗ C. The type ν of M at p is the minimal length
of commutators needed to span the maximal space. In this case we say that M is of type ν at p
or (M, p) is of type ν.

A CR-manifoldM is called finitely nondegenerate at p (see [H83, BHR96, E98] and also [BER99a,
§11.1]) if, for some integer k ≥ 1,

spanC{TLs
(. . .TL2(TL1θ) . . .)(p) : 0 ≤ s ≤ k, Lj ∈ Γ(T 0,1M), θ ∈ Γ(T ∗0M)} = T ∗1,0

p M, (2.1)

where T ∗0M and T ∗1,0M denote the bundles of complex 1-forms that vanish on T cM × C and
on T 0,1M respectively and TL is the Lie derivative along L. Recall that for any (0, 1) vector field
L, the Lie derivative TL leaves the space Γ(T ∗1,0M) invariant and is given there by TLω = iLdω,
where iL denotes the contraction. If the number k is minimal with the above property, we say that
M is k-nondegenerate at p or (M, p) is k-nondegenerate.

The following example shows that the conclusion of Theorem 1.1 may not hold if (M, p) is only
assumed to be finitely nondegenerate and of finite type at a sequence of points converging to p.

Example 2.1. Let M0 ⊂ C2
z,w be given by Imw = λ(Rew)zz, where λ(x) is a smooth function on

R that is zero for x ≤ 0 and positive for x > 0 and let M1 ⊂ C2
z,w be the quadric Imw = zz. Then

M := M0×M1 is finitely nondegenerate (even Levi-nondegenerate) and of finite type at every point
(0, x, a, b) ∈ M with x > 0. However, the obvious decomposition of (M, 0) as (M0, 0) × (M1, 0) is
not unique. Indeed, let ϕ be a smooth real function on R that is one for x ≥ 0 and greater than
one for x < 0. Then the map

(z0, w0, z1, w1) 7→ (z0, w0, ϕ(Rew0)z1, (ϕ(Rew0))
2w1)
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defines a CR-automorphism of M that does not preserve the given splitting M = M0 ×M1.

3. Approximate infinitesimal automorphisms

We begin by considering a germ (M, p) of a generic real-analytic submanifold in CN with a
vector-valued defining function r = (r1, . . . , rd). Recall that an infinitesimal automorphism of
(M, p) in CN is a germ at p of a holomorphic vector field L on CN such that ReL is tangent to
M , i.e. ReLr = 0 on M . More generally, we introduce the notion of an approximate infinitesimal
automorphisms of a given order k. By definition, an approximate infinitesimal automorphism of
(M, p) of order k is a germ at p of a holomorphic vector field L on C

N satisfying

ReLr(x) = o(|x− p|k) as x ∈M → p.

We denoted by autk(M, p) the vector space of all approximate infinitesimal automorphisms of
(M, p) of order k.

For a germ of a holomorphic map f at p ∈ CN , denote by jk
pf its k-jet at p. Also denote by

Jk
p (CN ,CN) the k-th jet space of holomorphic self maps of CN at p. Our goal in this section is to

prove the following property that may be of independent interest:

Proposition 3.1. Let (M, p) be a germ of a real-analytic generic submanifold in CN of codimen-
sion d. Suppose (M, p) is l-nondegenerate and of type ν. Then for any k ≥ (2d(ν−1)+2)(2d+3)l,
the image of autk(M, p) under the jet evaluation map

j(2d+3)l
p : autk(M, p) → J (2d+3)l

p (CN ,CN)

is a totally real linear subspace of J
(2d+3)l
p (CN ,CN).

Proof. Without loss of generality we may assume p = 0. Let L :=
∑

j ξ
j ∂

∂zj
∈ autk(M, p) be an

approximate infinitesimal automorphism and let {θt : t ∈ (−ε, ε)} be its local flow defined in a
neighborhood of 0 in CN . Since L is holomorphic, θt(z) is holomorphic in z and real-analytic in t.
Consider the power series expansion

θt(z) =
∑

j≥0

Θj(z)t
j

of θt(z) with respect to t, where Θj : CN → CN is the germ of a holomorphic map at 0. Then
Θ0 = id and Θ1 = (ξ1, . . . , ξN).

Now let r(z, z) = (r1(z, z), . . . , rd(z, z)) be a real-analytic defining function of (M, p) and let

h(z, z, t) := r(θt(z), θt(z)).

Consider the power series expansion

h(z, z, t) =
∑

j≥0

hj(z, z)t
j

of h with respect to t. Since

r(θt(z), θt(z)) = r(z, z) + 2tReLr(z, z) + o(|t|) as t→ 0,
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we have h0 ≡ 0 on M and h1(z, z) = o(|z|k) as z → 0 in M by the assumptions. Then, by the
standard complexification argument, we obtain on the complexification M := {(z, ζ) ∈ U × U :
r(z, ζ) = 0} of M , where U is a sufficiently small neighborhood of 0 in C

N ,

r(θt(z), θt(ζ)) = h(z, ζ, t) =
∑

j≥1

hj(z, ζ)t
j (3.1)

such that

h1(z, ζ) = o(|(z, ζ)|k) as (z, ζ) ∈ M → 0.

Choose a linear basis of real-analytic (0, 1) vector fields L1, . . . , Ln, on M near 0, where n =
N − d. By a slight abuse of notation we write the same letters for their complexifications on
M. For a multi-index α = (α1, . . . , αn), write |α| := α1 + · · · + αn and Lα := Lα1

1 · · ·Lαn
n . Since

M is l-nondegenerate and θt is invertible at 0, we have near 0 the following span condition (see
[BER99a, Proposition 11.2.4])

span{Lαrm
z (θt(z), θt(z)) : 1 ≤ m ≤ d, |α| ≤ l} = C

N ,

where rm
z :=

(
∂rm

∂z1
, . . . , ∂rm

∂zN

)
∈ CN is the gradient of the mth component of r.

Then by applying the operators Lα for |α| ≤ l to (3.1) and using the implicit function theorem,
we obtain as in [KZ01, §4.1] the basic reflection identity

θt(z) = Ψ(z, ζ, j l
ζθt) + h0(z, ζ, t), (z, ζ) ∈ M, (3.2)

where Ψ is a holomorphic map defined in a neighborhood of (0, 0, j l
0id) in CN ×J l(CN ,CN) which

is independent of θt, and h0 =
∑

j≥1 h
0
j(z, ζ)t

j is a holomorphic map (depending on θt) defined in

a neighborhood of 0 in CN × CN × (−ε, ε) such that

h0
1(z, ζ) = o(|(z, ζ)|k−l) as (z, ζ) ∈ M → 0.

Moreover, differentiating (3.2) in z, we obtain for τ ≤ k − l,

jτ
z θt = Ψτ (z, ζ, jτ+l

ζ θt) + hτ (z, ζ, t), (z, ζ) ∈ M, (3.3)

where hτ (z, ζ, t) =
∑

j≥1 h
τ
j (z, ζ)t

j is a holomorphic map satisfying

hτ
1(z, ζ) = o(|(z, ζ)|k−(l+τ)) as (z, ζ) ∈ M → 0.

For every positive integer µ, define the iterated complexification Mµ of order µ as follows
(see [Z97, Z99, KZ01]). Let Mµ be the connected component of {(ζµ, . . . , ζ1, ζ0) ∈ C(µ+1)N :
rj(ζ

j, ζj−1) = 0, j = 1, . . . , µ} containing 0, where

rj(ζ
j, ζj−1) :=

{
r(ζj, ζj−1) if j is odd,

r(ζj, ζj−1) if j is even.

Then by iterating (3.3) 2d+ 3 times and evaluating at ζ0 = 0, we obtain

θt(z) = Ψ̂(z,B, j
(2d+3)l
0 θt) + ĥ(z,B, t), (z,B) ∈ M2d+3 ∩ {ζ0 = 0},
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where Ψ̂ is independent of θt, B = (ζ2d+2, . . . , ζ0) and ĥ(z,B, t) =
∑

j≥1 ĥj(z,B)tj is such that

ĥ1(z,B) = o(|(z,B)|k−(2d+3)l), (z,B) ∈ M2d+3 ∩ {ζ0 = 0} → 0.

Since M is of type ν, by similar arguments as in [KZ01, §4.2], we obtain a singular jet
parametrization

θt(z) = Ψ̌
(
λ,

z

λm
, j

(2d+3)l
0 θt

)
+ ȟ

(
λ,

z

λm
, t

)

for some integer m ≤ 2d(ν − 1), where λ ∈ C, Ψ̌ is a holomorphic map in a neighborhood of

(0, 0, j
(2d+3)l
0 id) in C × CN × J

(2d+3)l
0 (CN ,CN) independent of θt and ȟ(λ, z̃, t) =

∑
j≥1 ȟj(λ, z̃)t

j is

a holomorphic map in a neighborhood of 0 in C × CN × (−ε, ε) such that

ȟ1(λ, z̃) = o(|(λ, z̃)|k−(2d+3)l) as (λ, z̃) → 0.

Then by [KZ01, Lemma 4.4], we have

θt(z) = Φ(z, j
(2d+3)l
0 θt) + h̃(z, t), (3.4)

where Φ is a holomorphic map in a neighborhood of (0, j(2d+3)lid) in C
N × J

(2d+3)l
0 (CN ,CN) and

h̃(z, t) =
∑

j≥1 h̃j(z)t
j is a holomorphic map in a neighborhood of 0 in CN × (−ε, ε) such that

h̃1(z) = o
(
|z|

k−(2d+3)l
m+1

)
as z ∈ C

N → 0.

We differentiate (3.4) in t at t = 0 to obtain a jet parametrization

ξ(z) = Φ̂(z, j
(2d+3)l
0 ξ) + o

(
|z|

k−(2d+3)l
m+1

)
as z ∈ C

N → 0, (3.5)

where ξ := (ξ1, . . . , ξN) denote the components of the original infinitesimal automorphism L. Since
m ≤ 2d(ν − 1) and

k ≥ (2d(ν − 1) + 2)(2d+ 3)l ≥ (m+ 2)(2d+ 3)l,

differentiation of (3.5) (2d+ 3)l times in z at z = 0 yields

j
(2d+3)l
0 ξ = Φ̌(j

(2d+3)l
0 ξ),

where Φ̌ is a holomorphic map in a neighborhood of j
(2d+3)l
0 id in J

(2d+3)l
0 (CN ,CN). Hence we have

ζ = Φ̌(ζ̄) for any ζ ∈ j
(2d+3)l
0 (autk(M, p)) and therefore j

(2d+3)l
0 (autk(M, p)) ⊂ J

(2d+3)l
0 (CN ,CN) is

totally real. �

4. Rigidity properties of CR-families of automorphisms

Our next step in proving Theorems 1.1 and 1.2 consists of establishing rigidity properties for local
CR-families of automorphisms given as germs of smooth CR-maps ϕ : (S, a) × (M, p) → (M, p),
where (S, a) and (M, p) are CR-manifolds. By rigidity here we mean the following property:

Proposition 4.1. Let (S, a) and (M, p) be germs of smooth CR-manifolds that are finitely nonde-
generate and of finite type on dense subsets. If ϕ : (S, a)× (M, p) → (M, p) is a germ of a smooth
CR-map such that ϕ(a, ·) = id, then ϕ(s, ·) = id for all s ∈ S sufficiently close to a.
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In fact, it will follow from the proof that the same conclusion holds under the weaker assumption
that (S, a) is only minimal (in the sense of Tumanov [T88]) on a dense subset.

Proof. Let d be the CR-codimension of (M, p), i.e. the codimension of the complex tangent space
T c

pM in TpM . We first assume that M is finitely nondegenerate and of finite type at p (and not only
on a dense subset). Choose l such thatM is l-nondegenerate at p. It is shown in [KZ01] that, for any
invertible jet (p, λ) ∈ J2(d+1)l(M,M), there exists a J2(d+1)l+1(M,M)-valued smooth function Φ
defined in a neighborhood of (p, λ) such that all germs of smooth CR-diffeomorphisms f : M →M

at any q ∈M with (q, j
2(d+1)l
q f) sufficiently close to (p, λ), satisfy a complete differential system

j2(d+1)l+1
x f = Φ(x, j2(d+1)l

x f)

for x sufficiently close to q.
Now choose X ∈ aut(M, p) and let {θt : t ∈ (−ε, ε)} be its local flow. Then there is a neighbor-

hood U of p in M such that for all t ∈ (−ε, ε), θt is well-defined in U and satisfies

j2(d+1)l+1
x θt = Φ(x, j2(d+1)l

x θt) (4.1)

for all x ∈ U . By differentiating (4.1) in t at t = 0, we obtain a complete differential system

j2(d+1)l+1
x X = Ψ(x, j2(d+1)l

x X), x ∈ U

for X, where Ψ is a J2(d+1)l+1(M,TM)-valued smooth function defined in a neighborhood of

(p, j
2(d+1)l
p X) in the space J2(d+1)l(M,TM) of 2(d+1)l-jets of vector fields on M . As a consequence,

we obtain finite jet determination for infinitesimal CR-automorphisms: if X, Y ∈ aut(M, p) and

j
2(d+1)l
p X = j

2(d+1)l
p Y , then X ≡ Y .

Let ϕ : (S, a) × (M, p) → (M, p) be a germ of a CR-map satisfying the assumptions of the
Proposition 4.1. For any (1, 0) vector field L on S in a neighborhood of a such that L(a) 6= 0,
define one-parameter families {θt : t ∈ (−ε, ε)} and {ηt : t ∈ (−ε, ε)} of local CR-diffeomorphisms
of M by

θt(x) := ϕ(σ1(t), x), ηt(x) := ϕ(σ2(t), x),

where σ1 and σ2 are the integral curves of ReL and ImL, respectively such that σ1(0) = σ2(0) = a.

Therefore θ̇0 and η̇0 are infinitesimal CR-automorphisms, where the dot denotes the derivative in
t. Moreover, by the definition of θt and ηt, we have θ̇0, η̇0 ∈ Γ(M,T cM). On the other hand,

η̇0 = ϕ∗(σ̇2(0), x) = ϕ∗(ImL(a), x) = Jϕ∗(ReL(a), x) = Jθ̇0,

where J is the complex structure on T cM . Hence we obtain an infinitesimal automorphism X :=
θ̇0 ∈ aut(M, p) ∩ Γ(M,T cM) such that also JX ∈ aut(M, p).

Now set k := (2d(ν − 1) + 2)(2d + 3)l as in Proposition 3.1, where ν is the type of M at
p. By [KZ01, Proposition 3.1], we can choose a neighborhood U of p and a smooth embedding
ψ : U → Cn+d, n = dimCRM , which is CR of order k + 1 at p, i.e. for any (0, 1) vector field L on
M defined near p, Lψ(x) = o(|x − p|k) as x → p, and such that ψ(p) = 0 and ψ(U) is a generic
real-analytic submanifold of codimension d.
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We write ψ∗(X) = Re
∑n+d

j=1 ξ
j ∂

∂zj
. Since ψ is CR of order k+1 at p, it follows that each ξj is CR

of order k at 0. Therefore we can choose a holomorphic vector field
∑n+d

j=1 ξ̃
j ∂

∂zj
∈ autk(ψ(M), 0)

such that jk
0 (ξ1, . . . , ξn+d) = jk

0 (ξ̃1, . . . , ξ̃n+d). Define j : aut(M, p) → J
(2d+3)l
0 (Cn+d,Cn+d) by

j(X) := j
(2d+3)l
0 (ξ̃1, . . . , ξ̃n+d).

Then by the finite jet determination in aut(M, p) mentioned above and by Proposition 3.1, j

is injective and the image j(aut(M, p)) ⊂ J
(2d+3)l
0 (Cn+d,Cn+d) is a totally real linear subspace.

Moreover, since ψ is CR of order k + 1 at p, for any X ∈ aut(M, p) ∩ Γp(M,T cM) we have

ϕ∗(JX) = Jϕ∗(X) + o(|x− p|k), x ∈M → p,

and therefore j(JX) = J(j(X)) since JX ∈ aut(M, p). Since j(aut(M, p)) is totally real and

j is injective, this implies X ≡ 0. In the above notation this means θ̇0(x) ≡ 0 or equivalently
ϕ∗(ReL(a), x) = 0. A similar argument applied to ϕb(s, x) := ϕ−1

b (ϕ(s, x)) for ϕb := ϕ(b, ·) and
b ∈ S sufficiently close to a shows that ϕ∗(ReL(b), x) = 0. Since L is an arbitrary (1, 0) vector
field on S, it follows that also ϕ∗(L, x) = ϕ∗(L, x) = 0. Since (S, a) is of finite type, this implies
that ϕ(·, x) is constant for every x ∈ M (sufficiently close to p). (If (S, a) is merely minimal, the
same conclusion follows by observing that ϕ(·, x) is constant along CR-curves on S.) Hence we
obtain the required conclusion in the case M is finitely nondegenerate and of finite type at p.

To prove the statement in the general case, suppose that the conclusion does not hold for a germ
of a smooth CR-map ϕ : (S, a) × (M, p) → (M, p). Then the partial derivative ∂sϕ(s, x) does not
vanish at points arbitrary close to (a, p). On the other hand, the above argument implies that the
derivative is zero near all minimal points of S that are sufficiently close to a. By the assumption,
the minimal points are dense, and hence we reach a contradiction. The proof is complete. �

5. Local splitting of CR-maps; Proof of Theorem 1.1

In this section we prove Theorem 1.1. Let (M, p) be as in Theorem 1.1 and fix a decomposition
into irreducible factors

(M, p) ∼= (M1, p1) × · · · × (Mm, pm).

It is clear that such a decomposition always exists but a priori may not be unique. Let (M ′, p′) be
another CR-manifold and

(M ′, p′) ∼= (M ′
1, p

′
1) × · · · × (M ′

m′ , p′m′) (5.1)

be a corresponding decomposition. Define

(M̃, p̃) := (M1, p1) × · · · × (Mm−1, pm−1).

Since M is finitely nondegenerate and of finite type on a dense subset, it follows directly from the

definition that the same holds for M̃ and Mm.
Now let f = (f 1, . . . , fm′

) be a germ of a smooth CR-diffeomorphism between (M, p) and
(M ′, p′), where f j is the jth component with respect to the decomposition (5.1). We fix connected
representatives for all germs of CR-manifolds and denote them by the same letters. We may then
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assume that f maps M = M1 × · · · ×Mm diffeomorphically onto an open connected subset U ′ ⊂
M ′ = M ′

1×· · ·×M ′
m′ . For an open subset Um ⊂Mm, define the subsets U ′

j := f j({p̃}×Um) ⊂ M ′
j.

We also write f−1 = (g1, . . . , gm) : U ′ →M .

Lemma 5.1. If Um ⊂ Mm is a sufficiently small neighborhood of pm, one has Πm′

j=1U
′
j ⊂ f({p̃} ×

Mm).

Proof. By the construction,

f({p̃} × Um) = {(f 1(p̃, v), · · · , fm′

(p̃, v)) : v ∈ Um} ⊂ Πm′

j=1U
′
j.

Let

π : (Mm, pm) × · · · × (Mm, pm)︸ ︷︷ ︸
m′

×(M̃, p̃) → (M̃, p̃)

be the germ given by

π(v1, . . . , vm′

, z) :=
(
g1

(
f 1(z, v1), . . . , fm′

(z, vm′

)
)
, . . . , gm−1

(
f 1(z, v1), . . . , fm′

(z, vm′

)
))
,

where z ∈ M̃ and vj ∈ Mm for 1 ≤ j ≤ m′. Then π(v, . . . , v, z) ≡ z holds for (z, v) ∈ M near
p. By Proposition 4.1, we conclude that π(v1, . . . , vm′

, z) ≡ z for (v1, . . . , vm′

) ∈ Mm × · · · ×Mm

near (pm, . . . , pm) and for z ∈ M̃ near p̃. This implies f−1(f 1(p̃, v1), . . . , fm′

(p̃, vm′

)) ∈ {p̃} ×Mm

for all v1, . . . , vm′

∈Mm near pm and the lemma follows. �

We need the following standard lemma proven here for the convenience of the reader.

Lemma 5.2. Let S ⊂ Rn1 × Rn2 be a smooth submanifold. Denote by πj : S → Rnj , j = 1, 2,
the canonical projections. Suppose that, for an open subset U ⊂ S, π1(U) × π2(U) ⊂ S. Then for
any p ∈ U and any sufficiently small neighborhood Ω of p in U , πj(Ω) is a submanifold of Rnj for
j = 1, 2, and Ω is open in π1(Ω) × π2(Ω).

Proof. The inclusion π1(U) × π2(U) ⊂ S implies dπ1(TpS) × dπ2(TpS) ⊂ TpS for every p ∈ U and
therefore dπ1(TpS) × dπ2(TpS) = TpS. By the semi-continuity of the dimension of each dπj(TpS),
j = 1, 2, with respect to p, we conclude that both dimensions are constant and therefore both π1

and π2 are of constant rank on U . The required statement follows from the rank theorem. �

In our situation each U ′
j is a subset ofM ′

j for all j = 1, . . . , m′, such that the product U ′
1×· · ·×U ′

m′

is contained in a smooth submanifold that is locally CR-equivalent to Mm by Lemma 5.1. Hence
it follows from Lemma 5.2 that, if the neighborhood Um of pm in Mm is chosen sufficiently small,
each U ′

j is a smooth submanifold of M ′. Moreover, Um is a CR-submanifold of M in the sense
that its tangent subspace intersects the complex tangent space of M along complex subspaces of
constant dimension. Then, U ′

1×· · ·×U ′
m′ is a CR-submanifold of M ′ by Lemma 5.1 and hence each

U ′
j ⊂M ′

j is a CR-submanifold. We obtain a decomposition of (Mm, pm) ∼= (U ′
1, p

′
1)×· · ·×(U ′

m′ , p′m′)
into a product of germs of smooth CR-submanifolds. Since, however, (Mm, pm) was chosen to be
irreducible, it is CR-equivalent to (U ′

j, p
′
j) for some j ∈ {1, . . . , m′}. Without loss of generality,

j = m′. Then the other factors U ′
j are zero-dimensional. We conclude that f 1(p̃, ·), . . . , fm′−1(p̃, ·)



DECOMPOSITION OF CR-MANIFOLDS AND SPLITTING OF CR-MAPS 11

are constant near pm and that fm′

(p̃, ·) : (Mm, pm) → (M ′
m′ , p′m′) defines a CR-equivalence. By

Proposition 4.1, we obtain:

Lemma 5.3. For z ∈ M̃ sufficiently close to p̃, one has fm′

(z, ·) ≡ fm′

(p̃, ·).

Lemma 5.4. Set f̃ := (f 1, . . . , fm′−1), M̃ ′ :=
∏m′−1

j=1 M ′
j and p̃′ := (p′1, . . . , p

′
m′−1) ∈ M̃ ′. Then

(i) f̃(·, pm) : (M̃, p̃) → (M̃ ′, p̃′) is a CR-diffeomorphism;

(ii) for any zm ∈Mm sufficiently close to pm, one has f̃(·, zm) ≡ f̃(·, pm).

From Lemmata 5.3 and 5.4 we conclude that f splits into the product f = h̃ × hm with

h̃ := f̃(·, pm) : (M̃, p̃) → (M̃ ′, p̃′) and hm := fm′

(p̃, ·) : (Mm, pm) → (M ′
m′ , p′m′). The proof of

Theorem 1.1 is completed by induction on m.

6. Global splitting of CR-maps; Proof of Theorem 1.2

We now turn to the proof of the global decomposition result stated in Theorem 1.2. Let M
and f : M → M ′ be as in Corollary 1.2. Without loss of generality we may assume that M is
connected. Fix decompositions

M ∼= M1 × · · · ×Mm, M ′ ∼= M ′
1 × · · · ×M ′

m′

into irreducible factors and write f = (f 1, . . . , fm′

), where f i is the i-th component of f .
For any point (p1, . . . , pm) ∈M , pi ∈ Mi, decompose

(Mi, pi) = (Mi,1, pi,1) × · · · × (Mi,si
, pi,si

)

and
(M ′

i , p
′
i) = (M ′

i,1, p
′
i,1) × · · · × (M ′

i,ri
, p′i,ri

)

into local irreducible factors, where p′i := f i(p) and let π′
j,r be the canonical projection of M ′

j to
M ′

j,r defined in a small neighborhood of p′j, where M ′
j,r is a representative of (M ′

j,r, p
′
j,r).

Now assume that

dimMm = max(dimM1, . . . , dimMm, dimM ′
1, . . . , dimMm′).

Fix p̃ := (p1, . . . , pm−1) ∈ M̃ := M1 ×· · ·×Mm−1. By Theorem 1.1, the germ f : (M, p) → (M ′, p′)
can be written as a product of germs of CR-diffeomorphisms f i,s : (Mi,s, pi,s) → (M ′

ji,s,ri,s
, p′ji,s,ri,s

).
Hence there exists arbitrarily small connected open neighborhood Ω of pm in Mm such that

f({p̃} × Ω) = f 1({p̃} × Ω) × · · · × fm′

({p̃} × Ω).

Moreover we can choose Ω so that for each j, j = 1, . . . , m′, hj,r := π′
j,r(f

j(p̃, ·)) is well-defined in
Ω,

f j({p̃} × Ω) = hj,1(Ω) × · · · × hj,rj(Ω)

and there exists a subset Aj ⊂ {1, . . . , rj} such that hj,r is constant if r ∈ Aj and of maximal
rank at every point of Ω if r 6∈ Aj.

We claim that

f({p̃} ×Mm) = f 1({p̃} ×Mm) × · · · × fm′

({p̃} ×Mm). (6.1)
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Indeed, set

G := {(x1, . . . , xm′) ∈Mm × · · · ×Mm︸ ︷︷ ︸
m′

: (f 1(p̃, x1), . . . , f
m′

(p̃, xm′)) ∈ f({p̃} ×Mm)}. (6.2)

For any x ∈Mm, we can choose a neighborhood Ωx ⊂Mm of x such that

f({p̃} × Ωx) = f 1({p̃} × Ωx) × · · · × fm′

({p̃} × Ωx).

Therefore (x, . . . , x︸ ︷︷ ︸
m′

) is an interior point of G. Let Gx be the maximal connected open set consisting

of interior points of G containing (x, . . . , x) and let Gx be its closure in Mm × · · · ×Mm. Then by
continuity of f , Gx is again a subset of G.

Choose any (x1, . . . , xm′) ∈ Gx. Then by (6.2), there is a point pm ∈ Mm such that f(p̃, pm) =
(f 1(p̃, x1), . . . , f

m′

(p̃, xm′)). Let Ω and A1 be as above and choose a connected neighborhood Ω1

of x1 in Mm such that in Ω1, h
1,r is well-defined for all r = 1, . . . , r1,

f 1({p̃} × Ω1) = h1,1({p̃} × Ω1) × · · · × h1,r1({p̃} × Ω1)

and there exists a subset B ⊂ {1, . . . , r1} such that h1,r is constant if r ∈ B and of maximal rank
at every point of Ω1 otherwise.

Since (x1, . . . , xm′) ∈ Gx and f({p̃} ×Mm) ⊂M ′ is a locally closed submanifold, there exist an
open subset V ⊂ Ω1 and a point (y2, . . . , ym′) ∈ Mm × · · · ×Mm︸ ︷︷ ︸

m′−1

arbitrarily close to (x2, . . . , xm′)

such that
f 1({p̃} × V ) × f 2(p̃, y2) × · · · × fm′

(p̃, ym) ⊂ f({p̃} × Ω).

Then h1,r is constant in V for r ∈ A1. Since V is an open subset of Ω1 and h1,r is of maximal rank
at every point of Ω1 if r 6∈ B, this implies A1 ⊂ B. Therefore h1,r(y) = h1,r(pm) for all y ∈ Ω1 if
r ∈ A1 and hence f 1({p̃} × Ω1) ⊂ f 1({p̃} × Ω) if Ω1 is sufficiently small.

By the same argument as above we can choose neighborhoods Ωj ⊂ Mm of xj , j = 2, . . . , m′,
such that f j({p̃} × Ωj) ⊂ f j({p̃} × Ω) or equivalently

f 1({p̃} × Ω1) × · · · × fm′

({p̃} × Ωm′) ⊂ f({p̃} × Ω).

Then (x1, . . . , xm′) is an interior point of Gx. Since Mm ×· · ·×Mm is a connected set, this implies
Gx = Mm × · · · ×Mm.

Now we have f({p̃}×Mm) = f 1({p̃}×Mm)×· · ·× fm′

({p̃}×Mm). Since, by the local splitting
property of f proven in Theorem 1.1, each f j(p̃, ·) is of constant rank, this implies that f j({p̃} ×
Mm) is a closed CR-submanifold of M ′

j. Since Mm is irreducible in the sense of Corollary 1.2,

we may assume that f j({p̃} ×Mm) is of zero dimension if j 6= m′ and Mm is CR-diffeomorphic
to fm′

({p̃} ×Mm). Since Mm is of maximal dimension among the irreducible factors of M and
M ′, this implies fm′

({p̃} ×Mm) is an open subset of M ′
m′ . Since fm′

({p̃} ×Mm) is also closed in
M ′

m′ and M ′
m′ is connected, we have fm′

({p̃} ×Mm) = M ′
m′ . Then by local splitting property of

f we can show that for any (q, x) ∈ M , q ∈ M̃ , x ∈ Mm, sufficiently close to (p̃, pm), we have

f̃(q, x) = f̃(q, pm) and fm′

(q, x) = fm′

(p̃, x), where f̃ := (f 1, . . . , fm′−1).
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Since (p̃, pm) is arbitrary and M is connected, f can be written as a product of two CR-

diffeomorphisms f̂ : M̃ → M̃ ′, and ĝ : Mm → M ′
m′ , where M̃ ′ := M ′

1 × · · · ×M ′
m′−1. The proof of

Theorem 1.2 is completed by induction on m.
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