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PARAMETRIZATION BY 2-JETS IN THE FINITE
TYPE CASE
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Abstract

We show that germs of local real-analytic CR automorphisms of a
real-analytic hypersurface M in C 2 at a point p ∈ M are uniquely
determined by their jets of some finite order at p if and only if M is
not Levi-flat near p. This seems to be the first necessary and sufficient
result on finite jet determination and the first result of this kind in
the infinite type case.

If M is of finite type at p, we prove a stronger assertion: the
local real-analytic CR automorphisms of M fixing p are analytically
parametrized (and hence uniquely determined) by their 2-jets at p.
This result is optimal since the automorphisms of the unit sphere are
not determined by their 1-jets at a point of the sphere. The finite
type condition is necessary since otherwise the needed jet order can
be arbitrarily high [Kow1,2], [Z2]. Moreover, we show, by an example,
that determination by 2-jets fails for finite type hypersurfaces already
in C3.

We also give an application to the dynamics of germs of local
biholomorphisms of C 2.

1 Introduction

By H. Cartan’s classical uniqueness theorem [Ca], a biholomorphic auto-
morphism of a bounded domain D ⊂ C

n is uniquely determined by its
value and its first order derivatives (that is, by its 1-jet) at any given point
p ∈ D. The example of the unit ball D shows that if p is taken on the
boundary ∂D the same uniqueness phenomenon does not hold for 1-jets
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but rather for 2-jets at p. (In this case, all automorphisms extend holo-
morphically across the boundary and, hence, any jet at a boundary point
is well defined.). More generally, results of E. Cartan [C1,2], N. Tanaka [T]
and S.-S. Chern–J.K. Moser [ChM] (see also H. Jacobowitz [J]) show that
unique determination by 2-jets at a point p holds for (germs at p of) local
biholomorphisms of C

n sending a (germ at p of an) open piece M ⊂ ∂D
into itself provided M is a Levi-nondegenerate real-analytic hypersurface.

The case of a degenerate real-analytic hypersurface M is much less un-
derstood, even in C

2. It was previously known that unique determination,
as above, by jets at p of some finite order k holds if M is of finite type at p,
due to a recent result of the first author jointly with M.S. Baouendi and
L.P. Rothschild [BER5, Corollary 2.7]. (We remark here that both notions
of finite type, i.e. that in the sense of [Ko], [BlG] and that of [D], coincide
in C

2.) On the other hand, the only known situation where the germs of
local biholomorphisms of C

2 sending M into itself are not uniquely deter-
mined by their k-jets at p, for any k, is that where M is Levi flat. The
first main result of this paper fills the gap between these two situations by
showing that the Levi-flat case is indeed the only exception:

Theorem 1.1. Let M ⊂ C
2 be a real-analytic hypersurface and p ∈ M .

The following are equivalent:

(i) M is not Levi-flat near p ∈M .

(ii) There is an integer k such that if H1 and H2 are germs at p of local
biholomorphisms of C

2 sendingM into itself with jkpH
1 = jkpH

2, then
H1 ≡ H2.

As mentioned above, the implication (ii)⇒(i) is well known. Thus,
we shall only be concerned with the opposite implication. We also men-
tion that the situation in higher dimensions is more complicated. The
implication (i)⇒(ii) is clearly false as can be easily seen by the example
M = M0 × C

n−2 ⊂ C
n where M0 ⊂ C

2 is any real-analytic Levi-nonflat
hypersurface. The reader is referred to the survey paper [Z2] for a discus-
sion of the higher dimensional case.

We remark that this and all the following results in this paper about
local biholomorphisms sending M into itself also hold for local biholomor-
phisms sending M into another real-analytic hypersurface M ′ ⊂ C

2. In-
deed, any fixed local biholomorphism f0 sending M into M ′ defines a one-
to-one correspondence between the set of germs preserving M and that
sending M to M ′ (as well as those of their jets) via g �→ f0 ◦ g.

Since germs of local biholomorphisms of C
2 sending M into itself are in
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one-to-one correspondence with germs of real-analytic CR automorphisms
of M by a theorem of Tomassini [To], we obtain the following immediate
consequence of Theorem 1.1:
Corollary 1.2. Let M ⊂ C

2 be a real-analytic hypersurface which is
not Levi-flat near a point p ∈M . Then there exists an integer k such that
if h1 and h2 are germs at p of real-analytic CR automorphisms of M with
jkph

1 = jkph
2, then h1 ≡ h2.

The proof of Theorem 1.1 relies on the parametrization of local biholo-
morphisms along the zero Segre variety given in §3, the method of singular
complete systems recently developed by the first author [E2] and on a finite
determination result for solutions of singular differential equations given
in §5.

We should point out that for a general real-analytic Levi-nonflat hyper-
surface M , the integer k needed to make the statement of Theorem 1.1 (and
of Corollary 1.2) true, may be arbitrarily large. In fact, examples given by
Kowalski [Kow1,2] and the third author [Z2] show that, for any integer
k ≥ 2, there exists a real-analytic Levi-nonflat hypersurface Mk ∈ C

2 and
two local biholomorphisms H1,H2 near p ∈Mk sending Mk into itself with
jkpH

1 = jkpH
2, but jk+1

p H1 	= jk+1
p H2.

The above mentioned examples, where a high order jet is needed to
distinguish between biholomorphic selfmaps, are all of infinite type at the
point p. This fact is explained by the second main result of this paper,
which improves the finite determination results above in the finite type
case in two different directions. First we show that, just as in the Levi-
nondegenerate case, the 2-jets are always sufficient for unique determination
of local CR automorphisms of hypersurfaces in C

2 of finite type. This
conclusion contrasts strongly with most known results for hypersurfaces of
finite type, where one usually has to take at least as many derivatives as the
type (i.e. the minimal length of commutators of vector fields on M in the
complex tangent direction required to span the full tangent space) as well
as with the situation in higher dimension as is illustrated by the following
example.

Example 1.3. For � ≥ 2, let M ⊂ C
3 be the real algebraic hypersurface

defined by
Imw = |z1|2 + Re z�

1z̄2 ,

where the coordinates of C
3 are (z1, z2, w). Observe that M is of finite type

(indeed, type 2) at 0 and, for any a ∈ R, the polynomial automorphism
Ha(z1, z2, w) = (z1, z2 + iaz�

1, w) ,
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sends (M, 0) into itself and its (� − 1)-jet at 0 coincides with that of the
identity.

Thus, for a hypersurface M of finite type at p ∈M in dimension higher
than 2, there is not even a number k depending on the type of M at p such
that biholomorphic selfmaps are uniquely determined by their k-jets at p.
In the general setting of Theorem 1.1 in any dimension, upper estimates on
how large the number k must be chosen, were previously only known for
finitely nondegenerate manifolds M (see e.g. [BER3] for this notion), due
to results in [BER1] (see also [Z1] and [BER2]) and the estimate for k in
this case was at least twice the type of M minus two. We would like to
point out that finite nondegeneracy is a strictly stronger notion than finite
type; e.g. the hypersurface

M := {(z,w) ∈ C
2 : Imw = |z|4}

is of finite type but is not finitely nondegenerate at 0. Since, however, the
hypersurfaces in Example 1.3 are finitely nondegenerate, it is shown that,
in dimension higher than 2, a uniform estimate for k is not possible even
in this more restrictive class. In this paper, we show that, in C

2, 2-jets are
sufficient for unique determination as in Theorem 1.1 regardless of the type
of M at p.

The second improvement in the finite type case is the stronger conclu-
sion (than that of Theorem 1.1) that local biholomorphisms are not only
uniquely determined but are analytically parametrized by their 2-jets. We
denote by G2

p(C 2) the group of all 2-jets at p of local biholomorphisms
H : (C 2, p) → (C 2, p′).
Theorem 1.4. Let M ⊂ C

2 be a real-analytic hypersurface of finite type
at a point p ∈M . Then there exist an open subset Ω ⊂ C

2 ×G2
p(C 2) and

a real-analytic map Ψ(Z,Λ): Ω → C
2, which in addition is holomorphic

in Z, such that the following holds. For every local biholomorphism H
of C

2 sending (M,p) into itself, the point (p, j2pH) belongs to Ω and the
identity

H(Z) ≡ Ψ(Z, j2pH)
holds for all Z ∈ C

2 near p.

The conclusion of Theorem 1.4 was previously known for Levi-nonde-
generate hypersurfaces in C

N due to the classical results mentioned above
and for Levi-nondegenerate CR submanifolds of higher codimension due
to a more recent result of V.K. Beloshapka [Be]. The existence of a k-jet
parametrization, for some k, was known in the more general case (than that
of Levi nondegenerate hypersurfaces) where M is finitely nondegenerate
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at p (see [BER4] and previous results in [BER1] and [Z1]). For other
results on finite jet determination and finite jet parametrization of local
CR automorphisms (in the finite type case), the reader is referred to the
papers [H], [BER2,4], [Ha], [L], [BMR], [E1], [K], [KZ]. Theorem 1.4 will
be a consequence of Theorem 4.1 which will be proved in §4.

We conclude this introduction by giving some applications of our main
results. In view of a regularity result of X. Huang [Hu], a unique deter-
mination result can be formulated for continuous CR homeomorphisms as
follows. Recall that a continuous mapping h : M → C

2 is called CR if it
is annihilated, in the sense of distributions, by all CR vector fields on M
(i.e. by the traces of (0, 1)-vector fields in C

2 tangent to M). A homeo-
morphism h between two hypersurfaces M and M ′ is called CR if both h
and h−1 are CR mappings. Huang showed in the above mentioned paper
that every continuous CR mapping between two real-analytic hypersurfaces
M,M ′ ⊂ C

2 of finite type extends holomorphically to a neighborhood of
M in C

2. Thus Theorem 1.4 implies:

Corollary 1.5. Let M,M ′ ⊂ C
2 be real-analytic hypersurfaces of finite

type. Then, for any p ∈ M , if h1 and h2 are germs at p of local CR
homeomorphisms between M and M ′ such that

h1(x) − h2(x) = o
(‖x‖2

)
, x→ 0 , (1)

then h1 ≡ h2, where x = (x1, x2, x3) are any local coordinates on M van-
ishing at p.

Observe that, since a homeomorphism need not preserve the vanishing
order, a uniqueness statement in the spirit of Corollary 1.5 may not be
reduced to the case M = M ′ in general. In our case, however, the reduction
is possible due to the above mentioned theorem of Huang.

Our next application of Theorem 1.4 is a structure result for the group
Aut(M,p) of all local biholomorphisms H : (C 2, p) → (C 2, p) sending M
(with p ∈M) into itself. A fundamental problem, usually referred to as the
local biholomorphic equivalence problem, is to determine for which pairs of
(germs of) real submanifolds (M,p) and (M ′, p′) there exist local biholo-
morphisms sending (M,p) into (M ′, p′) or, formulated in a slightly different
way, to describe, for a given germ of a manifold (M,p), its equivalence class
under local biholomorphic transformations. There is, of course, no loss of
generality in assuming that p = p′. The action of the group Ep of all local
biholomorphisms H : (C2, p) → (C2, p) will take us from any germ (M,p)
to any other germ (M ′, p) in the same equivalence class. However, Ep does
not in general act freely on the equivalence class of (M,p). To understand
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the structure of the equivalence classes one is therefore led to study the
structure of the isotropy group Aut(M,p). Observe that Aut(M,p) is a
topological group equipped with a natural direct limit topology which it
inherits as a subgroup of Ep. A sequence of germs Hj is convergent if all
germs Hj extend holomorphically to a common neighborhood of p on which
they converge uniformly (cf. e.g. [BER1]). By standard techniques (see e.g.
[BER1] and [BER4]), Theorem 1.4 implies the following:
Corollary 1.6. Let (M,p) be a germ of a real-analytic hypersurface in
C

2 of finite type. Then the jet evaluation homomorphism

j2p : Aut(M,p) → G2
p(C

2) (2)
is a homeomorphism onto a closed Lie subgroup of G2

p(C
2) and hence de-

fines a Lie group structure on Aut(M,p).
We conclude with an application to the dynamics of germs of local

biholomorphisms of C
2:

Theorem 1.7. Let H : (C 2, 0) → (C 2, 0) be a local biholomorphism
tangent to the identity at 0, i.e. of the form H(Z) = Z +O(|Z|2). Suppose
that H preserves a germ of a Levi-nonflat real-analytic hypersurface at 0.
Then H fixes each point of a complex hypersurface through 0.

Theorem 1.7 is a consequence of Theorem 3.1, whose statement and
proof are given in §3.

2 Preliminaries

Recall that a real-analytic hypersurface M ⊂ C
N (N ≥ 2) is called Levi-flat

if its Levi form
L(ξ) :=

∑

k,j

∂2ρ

∂zk∂z̄j
ξkξ̄j

vanishes identically on the complex tangent subspace T c
pM := TpM ∩ iTpM

for any p ∈M , where M is locally given by {ρ = 0} with dρ 	= 0. It is well
known (and not difficult to see) that M is Levi-flat if and only if, at any
point p ∈ M , there are local holomorphic coordinates (z,w) ∈ C

N−1 × C

in which M has the form {Imw = 0}.
In general, let M ⊂ C

N be a real-analytic hypersurface with p ∈ M .
We may choose local coordinates (z,w) ∈ C

N−1×C, vanishing at p, so that
M is defined locally near p = (0, 0) by an equation of the form

M : Imw = ϕ(z, z̄,Rew) , (3)
where ϕ(z, z̄, s) is a real-valued, real-analytic function satisfying

ϕ(z, 0, s) ≡ ϕ(0, χ, s) ≡ 0 . (4)
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Such coordinates are called normal coordinates for M at p; the reader is
referred to e.g. [BER3] for the existence of such coordinates and related
basic material concerning real submanifolds in complex space. We mention
also that the hypersurface M is of finite type at p = (0, 0) if and only if, in
normal coordinates, ϕ(z, χ, 0) 	≡ 0.

3 Parametrization of Jets Along the Zero Segre Variety

Let M ⊂ C
N be a real-analytic hypersurface with p ∈M . We shall choose

normal coordinates (z,w) ∈ C
N−1 × C for M at p; i.e. (z,w) vanishes

at p and M is defined locally near p = (0, 0) by (3) where ϕ(z, z̄, s) is a
real-valued, real-analytic function satisfying (4). Denote by Jk

0,0(C
N ) the

space of all k-jets at 0 of holomorphic mappings H : (CN , 0) → (CN , 0),
and by T(CN ) ⊂ J1

0,0(C
N ) the group of invertible upper triangular ma-

trices. Given coordinates Z and Z ′ near the origins of the source and
target copy of C

N , respectively, we obtain associated coordinates Λ =
(Λα

i )1≤i≤N,1≤|α|≤k ∈ Jk
0,0(C

N ) (where i ∈ Z+ and α ∈ Z
N
+ ), in which a jet

jk0H is given by Λα
i = ∂α

ZHi(0). In this paper, we shall be concerned with
the situation N = 2 where we have coordinates (z,w) near 0 in the source
copy of C

2 and (z′, w′) near 0 in the target C
2. A map H : (C2, 0) → (C2, 0)

is then given in coordinates by H(z,w) = (F (z,w), G(z,w)). We shall use,
for a given k, the notation Λ = (λij , µij)1≤i+j≤k, for the associated coor-
dinates on Jk

0,0(C
2), where λij = Fziwj(0) and µij = Gziwj(0), and we use

the notation Fziwj = ∂i
z∂

j
wF etc. for partial derivatives. In this section, we

shall prove the following result.

Theorem 3.1. Let M,M ′ ⊂ C
2 be real-analytic hypersurfaces that are

not Levi-flat, and let (z,w) ∈ C
2 and (z′, w′) ∈ C

2 be normal coordinates
for M and M ′ vanishing at p ∈M and p′ ∈M ′, respectively. Then, for any
integer k ≥ 0, the identity

Hwk(z, 0) ≡ Φk
(
z,H ′(0),H ′(0), jk+1

0 H, jk+1
0 H

)
(5)

holds for any local biholomorphism H : (C2, 0) → (C2, 0) sending M
into M ′, where Φk(z,Λ1, Λ̃1,Λ2, Λ̃2) is a polynomial in (Λ2, Λ̃2) ∈
Jk+1

0,0 (C 2)×Jk+1
0,0 (C 2) with coefficients that are holomorphic in (z,Λ1, Λ̃1) ∈

C×J1
0,0(C

2)×J1
0,0(C 2) in a neighborhood of {0}×T(C2)×T(C2). Moreover,

the C
2-valued functions Φk depend only on (M,p) and (M ′, p′).

Observe, that in normal coordinates, the line {(z, 0) : z ∈ C} is the
zero Segre variety and hence we see the conclusion of Theorem 3.1 as a
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parametrization of jets along the zero Segre variety. We first show how
Theorem 3.1 implies Theorem 1.7.
Proof of Theorem 1.7. Let H be a local biholomorphism tangent to the
identity at 0, as in Theorem 1.7, and (M, 0) the germ of a Levi-nonflat
real-analytic hypersurface which is preserved by H. By assumption, we
have j10H = j10 id. Thus, by Theorem 3.1, with k = 0, applied to the local
biholomorphisms H and id, both sending M into itself, we conclude that
H(z, 0) ≡ z. Hence each point of the complex hypersurface {z = 0} ⊂ C

2

is a fixed point of H. This completes the proof of Theorem 1.7. �

Before entering the proof of Theorem 3.1, we shall introduce some no-
tation. The equation (3) can be written in complex form

M : w = Q(z, z̄, w̄) , (6)
where Q(z, χ, τ) is a holomorphic function satisfying

Q(z, 0, τ) ≡ Q(0, χ, τ) ≡ τ . (7)
Equation (6) defines a real hypersurface if and only if (see [BER3])

Q
(
z, χ, Q̄(χ, z,w)

) ≡ w , (8)

where we use the notation h̄(ζ) := h(ζ̄).
We shall study the derivatives of Q(z, χ, τ) with respect to (z, τ) denoted

as follows:
qαµ(χ) := Qzατµ(0, χ, 0) , qαµ(0) = 0 , α ≥ 1 . (9)

Note that we do not use the function qαµ(χ) for α = 0, since the corre-
sponding derivatives can be computed directly by (7):

Qτµ(0, χ, 0) ≡
{

1 for µ = 1
0 for µ > 1 .

(10)

We now use the functions qαµ(τ) to define biholomorphic invariants of
(M,p) as follows. Let m0 be the positive integer (or ∞) given by

m0 := min
{
m ∈ Z+ : qαµ(χ) 	≡ 0 , α+ µ = m

}
, (11)

where we set m0 = ∞ if qαµ(χ) ≡ 0 for all (α, µ). Thus, m0 = ∞ is
equivalent to M being Levi-flat. In what follows, we shall assume that M
is not Levi-flat, i.e. m0 <∞. We also define

µ0 := min
{
µ ∈ Z+ : qαµ(χ) 	≡ 0 , α+ µ = m0

}
, (12)

and set α0 := m0 − µ0.
Let M ′ ⊂ C

2 be another real-analytic hypersurface, and let (z′, w′) ∈ C
2

be normal coordinates for M ′ at some point p′. In what follows, we shall
use a ′ to denote an object associated to M ′ corresponding to one de-
fined previously for M . Let furthermore H = (F,G) be a local mapping
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(C2, p) → (C2, p′). Then H sends (a neighborhood of p in) M into M ′ if
and only if it satisfies the identity

G
(
z,Q(z, χ, τ)

) ≡ Q′(F (z,Q(z, χ, τ)), F̄ (χ, τ), Ḡ(χ, τ)
)
, (13)

for (z, χ, τ) ∈ C
3. In particular, setting χ = τ = 0, we deduce that

G(z, 0) ≡ 0 . (14)
It follows from (14) that, in normal coordinates, the 2 × 2 matrix H ′(0) is
triangular and therefore H is a local biholomorphism if and only if

Fz(0)Gw(0) 	= 0 . (15)
We have the following property.

Proposition 3.2. Let M ⊂ C
2 be a real-analytic hypersurface. Then,

the integers m0, α0, and µ0 defined above are biholomorphic invariants.

Proof. We have to show that, if (M,p) and (M ′, p′) are locally biholomor-
phic, then µ0 = µ′0 and α0 = α′

0. We introduce the following ordering of
the pairs (α, µ) ∈ Z

2
+. We write (α, µ) ≺ (β, ν) if either α+µ < β+ ν, or if

α+µ = β+ν and µ < ν (or, equivalently, α > β). We prove the statement
by contradiction. Suppose (α0, µ0) ≺ (α′

0, µ
′
0). We differentiate (13) by the

chain rule α0 times in z and µ0 times in τ , evaluate the result at (z, τ) = 0
and use the identities (7), (10) and (14). On the right-hand side we ob-
tain a sum of terms each of which has a factor of Q′

zαχβτµ(0, F̄ (χ, 0), 0)
with (α, µ) � (α0, µ0). By the assumption (α0, µ0) ≺ (α′

0, µ
′
0), all these

derivatives are zero. Similarly, using the fact that Qzατµ(0, χ, 0) ≡ 0 for
(α, µ) ≺ (α0, µ0) on the left-hand side, we conclude that

Gzα0wµ0 (0) +Gw(0) qα0µ0(χ) ≡ 0 . (16)
Since Gw(0) 	= 0 and qα0µ0(χ) 	= const, we reach the desired contradiction.
We must then have (α0, µ0) � (α′

0, µ
′
0). The opposite inequality follows by

reversing the roles of M and M ′ by considering the inverse mapping H−1.
Hence, (α0, µ0) = (α′

0, µ
′
0) as claimed. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. As in the proof of Proposition 3.2, we differentiate
(13) by the chain rule α0 times in z and µ0 times in τ , evaluate the result
at (z, τ) = 0 and use the identities (7), (10) and (14):

Gzα0wµ0 (0) +Gw(0) qα0µ0(χ)

≡ q′α0µ0

(
F̄ (χ, 0)

)(
Fz(0) + Fw(0)q10(χ)

)α0Gw(χ, 0)µ0 . (17)
By putting χ = 0 and using (9) we obtain Gzα0wµ0 (0) = 0. Furthermore,
the derivative Gw(χ, 0) on the right-hand side of (17) can be computed by
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differentiating (13) in τ at (z, τ) = 0:

Gw(χ, 0) ≡ Gw(0) − q′10(F̄ (χ, 0))Fw(0) . (18)

Note that for χ = 0, we obtain Gw(0) = Gw(0), i.e. Gw(0) is real. After
these observations, (17) can be rewritten as

Gw(0) qα0µ0(χ) ≡ q′α0µ0

(
F̄ (χ, 0)

)(
Fz(0)

+ q10(χ)Fw(0)
)α0

(
Gw(0) − q′10(F̄ (χ, 0))Fw(0)

)µ0 . (19)

We point out that q10(χ) 	≡ 0 (and similarly q′10(χ′) 	≡ 0) if and only if
m0 = 1 (in this case, (α0, µ0) = (1, 0)). It can be shown that m0 = 1 if and
only if M is finitely nondegenerate at p (see e.g. [BER3]). We will not use
this fact in the present paper.

It follows, that for m0 ≥ 2, (19) reduces to the form

qα0µ0(χ) ≡ q′α0µ0

(
F̄ (χ, 0)

)
Fz(0)α0Gw(0)µ0−1. (20)

If m0 = 1, in which case (α0, µ0) = (1, 0), we instead have

Gw(0) q10(χ) ≡ q′10(F̄ (χ, 0))
(
Fz(0) + Fw(0)q10(χ)

)
. (21)

Define l ≥ 1 to be the order of vanishing at 0 of the function qα0µ0(χ) 	≡ 0.
(It is not difficult to verify from (8) that l ≥ α0. We will not use this
property.) Together with (15), it follows from (20) and (21), respectively,
that l = l′. Let us write

qα0µ0(χ) ≡ (q(χ))l, q′α0µ0
(χ′) ≡ (q′(χ′))l, (22)

where q and q′ are local biholomorphisms of C at 0. Taking lth roots from
both sides of (20) and (21) respectively we obtain

q′
(
F̄ (χ, 0)

) ≡ E(χ)q(χ) , (23)

where

E(χ) :=

{(
Gw(0)(Fz(0) + Fw(0)q10(χ))−1

)1/l
, m0 = 1 ,

(
Fz(0)−α0Gw(0)1−µ0

)1/l
, m0 ≥ 2 ,

and the branch of the lth root has to be chosen appropriately. We want to
write E as a holomorphic function in χ, Fz(0), Fz(0) and Fw(0). For this,
observe that there exists a constant c 	= 0 such that

E(χ) ≡
{
c
(
1 + Fw(0)Fz(0)−1q10(χ)

)−1/l
, m0 = 1 ,

c , m0 ≥ 2 ,
(24)

where we used the principal branch of the lth root near 1 (for χ small). We
substitute the expressions (24) for E(χ) in (23) and differentiate once in χ
at χ = 0 to obtain

q′χ′(0)Fz(0) ≡ cqχ(0) (25)



556 P. EBENFELT, B. LAMEL AND D. ZAITSEV GAFA

in both cases m0 = 1 and m0 ≥ 2. Solving (25) for c and using (23) and
(24) we obtain

F̄ (χ, 0) ≡ χΨ
(
χ,H ′(0),H ′(0)

)
, (26)

where Ψ is a holomorphic function in its arguments, defined in a neighbor-
hood of the subset {0} × T(C2) × T(C2) ⊂ C × J1

0,0(C
2) × J1

0,0(C 2) such
that

Ψ(0,Λ, Λ̃) 	= 0 (27)
for any (Λ, Λ̃) ∈ T(C2) × T(C2). In particular, we see from (26) that the
mapping H along the Segre variety {w = 0} is completely determined by
its first jet at 0. In fact H(z, 0) depends only on the derivatives Fw(0),
Fz(0), Fz(0).

We shall now determine derivatives of H with respect to w along the
Segre variety {w = 0} in terms of jets of H at the origin. We begin with the
derivatives Fwk(z, 0) (or Fwk(χ, 0)), k ≥ 1. To get an expression involving
them we use the same strategy as above, but now we differentiate (13) α0

times in z and µ0 + k times in τ and then set (z, τ) = 0. We shall use
the notation (Fziwj)i+j≤k+1 etc. to denote strings of partial derivatives of
positive order. We obtain

Gzα0wµ0+k(0) + Ψ1(χ, jk+1
0 G)

≡ ∂z̄q
′
α0µ0

(
F̄ (χ, 0)

)(
Fz(0) + Fw(0)q10(z̄)

)α0Fwk(χ, 0)Gw(χ, 0)µ0

+ Ψ2

(
χ, F̄ (χ, 0), jk+1

0 F, (Fwr(χ, 0))r≤k−1, (Gws(χ, 0))s≤k+1

)
, (28)

where the functions Ψ1(χ,Λ) and Ψ2(χ, χ′,Λ1,Λ2,Λ3) are polynomials in Λ
and (Λ1,Λ2,Λ3) respectively with holomorphic coefficients in (χ, χ′). (More
precisely, the coefficients are polynomials in (qαµ(χ)) and (q′αµ(χ′)) and in
their derivatives.) We claim, however, that no term involving Gwk+1(χ, 0)
occurs with a nontrivial coefficient in Ψ2 when m0 = 1. Indeed, in this case
α0 = 1 and µ0 = 0. Thus, to obtain the expression (28) we differentiate
once in z and k times in τ . Consequently, no term of the form Gwk+1(χ, 0)
can appear, as claimed.

We observe that from the identity (28) with χ = 0 we obtain a poly-
nomial expression for the derivative Gzα0wµ0+k(0) in terms of jk+1

0 H and
jk+1
0 H. (Recall that H = (F,G).) After substituting in (28) this expression

forGzα0wµ0+k(0), the right-hand side of (18) forGw(χ, 0) and the right-hand
side of (26) for F̄ (χ, 0), we obtain

∂χ′q′α0µ0

(
χΨ(χ,H ′(0),H ′(0)

)
Fwk(χ,0) ≡ Ψ3

(
χ,H ′(0),H ′(0), jk+1

0 H,

jk+1
0 H, (Fwr(χ, 0))r≤k−1, (Gws(χ, 0))s≤k+1

)
, (29)
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where Ψ3(χ,Λ1, Λ̃1,Λ2, Λ̃2,Λ3,Λ4) is a polynomial in (Λ2, Λ̃2,Λ3,Λ4) with
holomorphic coefficients in (χ,Λ1, Λ̃1). We also observe that the coefficient
of Fwk(χ, 0) on the left-hand side does not vanish identically by the choice
of (α0, µ0).

As before, we get an expression for the derivatives Gws(χ, 0) that occur
on the right-hand side of (29) by differentiating (13) in τ at (z, τ) = 0, this
time s ≥ 2 times:

Gws(0) ≡ q′10
(
F̄ (χ, 0)

)
Fws(0)

+ ∂χ′q′10
(
F̄ (χ, 0)

)
Fw(0)Fws−1(χ, 0) +Gws(χ, 0)

+ Ψ4

(
F̄ (χ, 0), (Fwi(0))i≤s−1, (Fwr(χ, 0))r≤s−2, (Gwj (χ, 0))j≤s−1

)
, (30)

where Ψ4(χ′,Λ1,Λ2,Λ3) is a polynomial in (Λ1,Λ2,Λ3) with holomorphic
coefficients in χ′. We solve (30) for Gws(z̄, 0) in terms of Gwt(z̄, 0) with
t < s. Then, by induction on s and by (18), we obtain for any s ≥ 1 an
identity of the form

Gws(χ,0) ≡ Gws(0)−q′10
(
F̄ (χ,0)

)
Fws(0)−∂χ′q′10(F̄ (χ,0))Fw(0)Fws−1(χ,0)

+ Ψ5

(
F̄ (χ, 0), (Hwi(0))i≤s−1, (Fwr (χ, 0))r≤s−2

)
, (31)

where Ψ5(χ′,Λ1,Λ2) is a polynomial in (Λ1,Λ2) with holomorphic coef-
ficients in χ′. Note that the term Fws−1(χ, 0) only occurs in (31) when
m0 = 1.

We now substitute the right-hand side of (30) for Gws(χ, 0) and the
right-hand side of (26) for F̄ (χ, 0) in the identity (29) to obtain

∂χ′q′α0µ0

(
χΨ(χ,H ′(0),H ′(0)

)
Fwk(χ, 0)

≡ Ψk
(
χ,H ′(0),H ′(0), jk+1

0 H, jk+1
0 H, (Fwr (χ, 0))r≤k−1

)
, (32)

where Ψk(χ,Λ1, Λ̃1,Λ2, Λ̃2,Λ3) is a polynomial in (Λ2, Λ̃2,Λ3) with holo-
morphic coefficients in (χ,Λ1, Λ̃1). We claim that an identity of the form

F̄wk(χ, 0) ≡ Ψ̃k
(
χ,H ′(0),H ′(0), jk+1

0 H, jk+1
0 H

)
(33)

holds, where Ψ̃k(χ,Λ1, Λ̃1,Λ2, Λ̃2) is a polynomial in (Λ2, Λ̃2) with holo-
morphic coefficients in (χ,Λ1, Λ̃1). We prove the claim by induction on k.
For k = 1, there is no occurrence of Λ3 = Fwr(χ, 0) on the right-hand side
of (32). We now would like to divide both sides of (32) by the first factor
Γ := ∂χ′q′α0µ0

(χΨ(χ,H ′(0),H ′(0)) on the left-hand side. We know from
(27) that this factor does not vanish identically. However, it may happen
that it vanishes for χ = 0. In order to obtain a holomorphic function on the
right-hand side after this division, we have to make sure that the vanishing
order of the right-hand side with respect to χ at the origin is not smaller
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that the vanishing order of Γ. Of course, by (32), this is true for those jet
values of (Λ1, Λ̃1,Λ2, Λ̃2) that come from a local biholomorphism H send-
ing M into M ′. On the other hand, we have no information about the
vanishing order of Ψ1(χ,Λ1, Λ̃1,Λ2, Λ̃2) for other values of (Λ1, Λ̃1,Λ2, Λ̃2).
Hence we may not be able to divide. The idea for solving this problem is
to extract the “higher order part” of Ψ1 that is divisible by Γ.

Let 0 ≤ ν < ∞ be the vanishing order of the function ∂χ′q′α0µ0
(χ′)

at χ′ = 0. Then the vanishing order of the left-hand side of (32) is at
least ν. By truncating the power series expansion in χ of the coefficients
of the polynomial Ψ1 on the right-hand side of (32), we can write it in
a unique way as a sum Ψ1 ≡ Ψ1

1 + Ψ1
2 such that both Ψ1

1 and Ψ1
2 are

polynomials in (Λ2, Λ̃2) with holomorphic coefficients in (χ,Λ1, Λ̃1), each
coefficient of Ψ1

1 is a polynomial in χ of order at most ν − 1 with holo-
morphic coefficients in (Λ1, Λ̃1) and each coefficient of Ψ1

2 is of vanish-
ing order at least ν with respect to χ. We now remark that, whenever
we set (Λ1, Λ̃1,Λ2, Λ̃2) = (H ′(0),H ′(0), jk+1

0 H, jk+1
0 H) for a mapping H

satisfying (32), the first polynomial Ψ1
1 must vanish identically in χ. There-

fore, the identity (32) will still hold after we replace Ψ1 by Ψ1
2. Now it

follows from (27) that Ψ1
2 is divisible by Γ and, hence, we have proved the

claim for k = 1. The induction step for k > 1 is essentially a repetition
of the above argument. Once (33) is shown for k < k0, we substitute it
for Fwr(χ, 0) in the right-hand side of (32). Then we obtain a polynomial
without Λ3 and the above argument can be used to obtain (33) for k = k0.
The claim is proved.

A formula for Ḡwk(χ, 0) similar to (33) is obtained by substituting the
result for F in (31) (and also using (26)). The proof of Theorem 3.1 is
complete. �

4 Parametrization of Biholomorphisms in
the Finite Type Case

In this section, we will prove the following theorem, from which Theorem 1.4
is a direct consequence and Corollary 1.6 follows by standard techniques
(see [BER1] and [BER4]). We keep the setup and notation introduced
in previous sections. We also denote by T2(C 2) the subspace of 2-jets in
J2

0,0(C
2) whose first derivative matrix is upper triangular.

Theorem 4.1. Let M,M ′ ⊂ C
2 be real-analytic hypersurfaces of finite

type, and let (z,w) ∈ C
2 and (z′, w′) ∈ C

2 be normal coordinates for M
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and M ′ at p ∈M and p′ ∈M ′, respectively. Then an identity of the form

H(z,w) ≡ Θ
(
z,w, j20H, j

2
0H

)
,

holds for any local biholomorphism H : (C2, p) → (C2, p′) sending M
into M ′, where Θ(z,w,Λ, Λ̃) is a holomorphic function in a neighborhood of

the subset {(0, 0)}×T2(C2)×T2(C2) in C
2×J2

0,0(C
2)×J2

0,0(C 2), depending
only on (M,p) and (M ′, p′).

Proof. We use the expansion of the function Q(z, χ, τ) (and similarly for the
function Q′(z′, χ′, τ ′), using a ′ to denote corresponding objects associated
to M ′) as follows

Q(z, χ, τ) = τ +
∑

β≥1

rβ(χ, τ)zβ , rβ(0, 0) = 0 . (34)

Recall that M is of finite type at 0 if and only if Q(z, χ, 0) 	≡ 0, i.e. if
rβ(χ, 0) 	≡ 0 for some β. We define a positive integer associated to (M,p)
by

β0 := min
{
β : rβ(χ, 0) 	≡ 0

}
(35)

and an integer β′0 associated to (M ′, p′) by the analogous formula. It follows
easily, by setting τ = 0 in the equation (13), differentiating in z and then
setting z = 0 as in the proof of Proposition 3.2, that β0 = β′0 (i.e. β0 is a
biholomorphic invariant). Indeed, by using also the fact that G(z, 0) ≡ 0,
we obtain in this way the identity

rβ0(χ, 0)Gw(0) ≡ r′β0

(
F̄ (χ, 0), 0

)(
Fz(0) + Fw(0)r1(χ, 0)

)
. (36)

By differentiating (13) with respect to z and setting τ = Q̄(χ, z, 0), we also
obtain

Qz

(
z, χ, Q̄(χ,z,0)

)
Gw(z,0) ≡ Q′

z

(
F (z,0),F̄ (χ,Q̄(χ,z,0)),Ḡ(χ,Q̄(χ,z,0))

)

· (Fz(z, 0) +Qz(z, χ, Q̄(χ, z, 0))Fw(z, 0)
)
, (37)

where we have used (8) and the fact that G(z, 0) ≡ 0. By using the conju-
gate of (13) to substitute for Ḡ(χ, Q̄(χ, z, 0)), we obtain

Qz

(
z, χ, Q̄

)
Gw(z, 0) ≡ Q′

z

(
F (z, 0), F̄ (χ, Q̄), Q̄′(F̄ (χ, Q̄), F (z, 0), 0)

)

· (Fz(z, 0) +Qz(z, χ, Q̄)Fw(z, 0)
)
, (38)

where we have used the notation Q̄ := Q̄(χ, z, 0). Observe, by differentiat-
ing (8) with respect to z and setting w = 0, that

Qz

(
z, χ, Q̄(χ, z, 0)

) ≡ −Qτ

(
z, χ, Q̄(χ, z, 0)

)
Q̄z(χ, z, 0) . (39)

Since Qτ (z, 0, 0) ≡ 1 by (7), we conclude from (34) and (39) that
Qz

(
z, χ, Q̄(χ, z, 0)

)
= ∂zrβ0(z, 0)χ

β0 +O(χβ0+1) . (40)
Also, observe that ∂zrβ0(z, 0) 	≡ 0 by the choice of β0. It follows that
∂zrβ0(z, 0) 	= 0 for all z in any sufficiently small punctured disc centered
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at 0. In such a punctured disc there exist β0 locally defined holomorphic
functions ψ(z, χ), differing by multiplication by a β0th root of unity, such
that

Qz

(
z, χ, Q̄(χ, z, 0)

) ≡ ψ(z, χ)β0 (41)
and

ψ(z, 0) ≡ 0, ψχ(z, 0) 	= 0 for z 	= 0 near 0 (42)
for each choice of ψ. Moreover, each local function ψ extends as a multiple-
valued holomorphic function (with at most β0 branches) to a neighborhood
of (0, 0) in C 2 \ {z = 0}. If we choose z in a sufficiently small punctured
disc centered at 0, then also ∂z′r

′
β0

(F (z, 0), 0) 	= 0 and the equation (38)
can be written

ψ(z, χ)β0Gw(z, 0)
(
Fz(z, 0) +Qz(z, χ, Q̄)Fw(z, 0)

)−1

≡ ψ′(F (z, 0), F̄ (χ, Q̄(χ, z, 0))
)β0. (43)

Gw(z0, 0) 	= 0. Taking β0th roots from both sides of (43) and substituting
the conjugate of (26) for F (z, 0) we obtain

ψ′(zΨ̄(z,H ′(0),H ′(0)), F̄ (χ, Q̄(χ, z, 0))
) ≡ E(z, χ)ψ(z, χ) (44)

with

E(z, χ) :=
(
Gw(z, 0)(Fz(z, 0) + ψ(z, χ)β0Fw(z, 0))−1

)1/β0 ,

and the branch of the β0th root has to be appropriately chosen. Analo-
gously to the proof of Theorem 3.1, we write

E(z, χ) ≡ c

(
Gw(z, 0)
Gw(0)

(Fz(z, 0)
Fz(0)

+Qz(z, χ, Q̄)
Fw(z, 0)
Fz(0)

)−1
)1/β0

, (45)

where c is a constant and where we used the principal branch of the β0th
root near 1. We now use Theorem 3.1 to rewrite (45) as

E(z, χ) ≡ cΦ
(
z, χ,H ′(0),H ′(0), j20H, j20H

)1/β0 , (46)

where Φ(z, χ,Λ1, Λ̃1,Λ2, Λ̃2) is a holomorphic function as in Theorem 3.1.
Here the problem arises that the values of Φ(0, 0,Λ1, Λ̃1,Λ2, Λ̃2) may dif-
fer from 1 and thus the values of the β0th root in (46) are not uniquely
determined. To solve this problem we use a trick to replace the function
Φ(z, χ,Λ1, Λ̃1,Λ2, Λ̃2) by

Φ(z, χ,Λ1, Λ̃1,Λ2, Λ̃2) − Φ(0, 0,Λ1, Λ̃1,Λ2, Λ̃2) + 1 .

The new function (denote it by Φ instead of the old one) takes the right
value 1 for (z, χ) = 0, so that the principal branch of its β0th root is defined,
and the identity (46) still holds for any local biholomorphism H = (F,G)
of C

2 sending (M,p) into (M ′, p′).
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We substitute the expression (46) for E(z, χ) in (44) and differentiate
once in χ at χ = 0 to obtain

ψ′
χ′

(
zΨ̄(z,H ′(0),H ′(0)), 0

) ≡ cΦ
(
z, 0,H ′(0),H ′(0), j20H, j20H

)1/β0ψχ(z, 0) .
(47)

By (41), the coefficient on the right-hand side does not vanish identically.
Hence we can solve c from (47) as a multiple-valued holomorphic function

c = c
(
z,H ′(0),H ′(0), j20H, j20H

)
(48)

and thus ignore the fact that c is constant. We know from (46), however,
that, whenever the arguments of Ψ and Φ are jets of a local biholomorphism,
the “function” c is actually (locally) constant. The different values of c are
due to the choice of different branches of ψ and ψ′. Recall that the values of
ψ and ψ′ may only differ by β0th roots of unity. If ψ and ψ′ are multiplied
by the roots of unity ε and ε′ respectively, then c is multiplied by ε′ε−1.

We claim that, for every fixed jet

(Λ0
1, Λ̃

0
1,Λ

0
2, Λ̃

0
2) ∈ T(C 2) × T(C 2) × J2

0,0(C
2) × J2

0,0(C 2) ,

the (multiple-valued) function c(z,Λ1, Λ̃1,Λ2, Λ̃2) is uniformly bounded for
(z,Λ1, Λ̃1,Λ2, Λ̃2) in some neighborhood of (0,Λ0

1, Λ̃
0
1,Λ

0
2, Λ̃

0
2). Indeed, it

follows from the construction that the derivative ψχ(z, 0) equals the β0th
root of ∂zrβ0(z, 0). Furthermore, by equation (36), the functions ∂zrβ0(z, 0)
and ∂zr

′
β0

(F (z, 0), 0) have the same vanishing order at z = 0. Then, taking
β0th powers of both sides in (47) we obtain (single-valued) holomorphic
functions of the same vanishing order at z = 0 (recall that both functions
Ψ and Φ do not vanish at z = 0). Hence cβ0 is bounded as a ratio of
two holomorphic functions having the same vanishing order. The claim is
proved.

We now substitute (48) for c into (46) and then use (44) to obtain

ψ′(zΨ̄(z,H ′(0),H ′(0)), F̄ (χ, Q̄(χ, z, 0))
)

≡ c
(
z,H ′(0),H ′(0),j20H,j20H

)
Φ

(
z,χ,H ′(0),H ′(0),j20H,j20H

)1/β0ψ(z,χ)
(49)

Since ψ′
χ(F (z, 0), 0) 	= 0 for z 	= 0 near 0, we may apply the implicit function

theorem and solve for F̄ (χ, Q̄(χ, z, 0)) in (49) to conclude that

F̄
(
χ, Q̄(χ, z, 0)

) ≡ Φ1(z, χ, j20H, j20H) , (50)

where Φ1(z, χ,Λ, Λ̃) is an (a priori multiple-valued) holomorphic function
defined in a domain

D ⊂ C × C × J2
0,0(C

2) × J2
0,0(C 2) (51)
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that contains all points (z0, 0,Λ0, Λ̃0) with z0 	= 0 that are sufficiently close
to the set {0}×{0}×T2(C 2)×T2(C 2). A value of Φ1 depends on the values
of ψ, ψ′ and c. We have seen that, if ψ and ψ′ are multiplied by ε and ε′

respectively, then c is multiplied by ε′ε−1. We now observe, that in fact the
identity (49) is invariant under this change. Hence we obtain exactly the
same value for Φ1 for all possible values of ψ and ψ′. We conclude that Φ1

is single-valued.
A similar expression for Ḡ is obtained by substituting (50) and (26) into

(13). In summary, we obtain

H̄(χ, Q̄(χ, z, 0)) ≡ Ξ
(
z, χ, j2H(0), j2H(0)

)
, (52)

where Ξ(z, χ,Λ, Λ̃) is a (C2-valued) holomorphic function in a domain D
as in (51). Here we conjugated and switched the variables.

To complete the proof of Theorem 4.1, we shall proceed as in [BER1].
We consider the equation

τ = Q̄(χ, z, 0) , (53)

and try to solve it for z as a function of (χ, τ) in a neighborhood of a
point z0 	= 0 close to 0. (We cannot apply the method of [BER1] at 0,
since the function Ξ in (52) may not be defined in a neighborhood of
{0} × {0} × T2(C 2) × T2(C 2).) We expand Q̄(χ, z, 0) in powers of z − z0
near z = z0 as follows

Q̄(χ, z, 0) ≡ p0(χ; z0) +
∑

γ≥1

pγ(χ; z0)(z − z0)γ (54)

with pγ(0; z0) ≡ 0 for all γ, since Q̄(0, z, 0) ≡ 0. Let γ0 be the smallest
integer γ ≥ 1 such that pγ(χ; z0) 	≡ 0 with z0 fixed. The existence of
γ0 < ∞ is guaranteed by the finite type condition. Moreover, if z0 	= 0
is sufficiently small, γ0 does not depend on z0. After dividing (53) by
pγ0(χ; z0)γ0+1 and using (54) we obtain

τ − p0(χ; z0)
pγ0(χ; z0)γ0+1

=
( z − z0
pγ0(χ; z0)

)γ0

+
∑

γ≥γ0+1

Cγ(χ; z0)
( z − z0
pγ0(χ; z0)

)γ
, (55)

where Cγ(χ; z0) := pγ(χ; z0)pγ0(χ; z0)γ−γ0−1. Then, by the implicit func-
tion theorem, the equation

η = tγ0 +
∑

γ≥γ0+1

Cγ(χ; z0)tγ

has γ0 solutions of the form t = g(χ, η1/γ0 ; z0), where g(χ, ζ; z0) is a holo-
morphic function in a neighborhood of {0}×{0}×(∆δ \{0}) with g(0, 0; z0)
≡ 0, where ∆δ := {z0 ∈ C : |z0| < δ} is a sufficiently small disc. Hence the
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equation (53) can be solved for z in the form

z = z0 + pγ0(χ; z0)g
(
χ,

(
τ − p0(χ; z0)
pγ0(χ; z0)γ0+1

)1/γ0

; z0

)
(56)

for χ 	= 0 and (τ − p0(z̄; z0))/pγ0(z̄; z0)
γ0+1 both sufficiently small. We now

substitute (56) for z in the identity (52) to obtain

H̄(χ, τ) ≡ Ξ̃
((

τ − p0(χ; z0)
pγ0(χ; z0)γ0+1

)1/γ0

, χ, j20H, j
2
0H; z0

)
, (57)

where Ξ̃(ζ, χ,Λ, Λ̃; z0) is a holomorphic function defined for all (ζ, χ,Λ, Λ̃; z0)
with (χ, ζ; z0) in a neighborhood of {0} × {0} × (∆δ \ {0}) and

(
z0 + pγ0(χ; z0)γ0+1g(χ, ζ; z0), χ,Λ, Λ̃

) ∈ D ,

where D is the domain of definition of the function Ξ in (52). It follows
from the above description of D that (0, 0,Λ0, Λ̃0; z0) is in the domain of
definition of Ξ̃ whenever z0 	= 0 and (z0, 0,Λ0, Λ̃0) is in a sufficiently small
neighborhood of {0} × {0} × T2(C 2) × T2(C 2).

Let us expand the function Ξ̃(ζ, χ,Λ, Λ̃; z0) in ζ

Ξ̃(ζ, χ,Λ, Λ̃; z0) ≡
∑

k≥0

Ak(χ,Λ, Λ̃; z0)ζk, (58)

and decompose it as Ξ̃ = Ξ̃1 + Ξ̃2, where

Ξ̃1(ζ, χ,Λ, Λ̃; z0) :=
∑

j≥0

Ajγ0(χ,Λ, Λ̃; z0)ζjγ0

Ξ̃2(ζ, χ,Λ, Λ̃; z0) :=
∑

k �∈γ0�+

Ak(χ,Λ, Λ̃; z0)ζk.
(59)

Since H̄(χ, τ) is holomorphic in a neighborhood of 0 in C
2, the function

of (χ, τ ; z0) on the right-hand side of (57) is independent of the value of
the γ0th root, independent of z0 	= 0 and extends holomorphically to a
neighborhood of 0 in C

3. Let us denote by Λ0 ∈ T2(C2) the value of j20H.
Since the function Ξ̃1(ζ, χ,Λ0, Λ̄0; z0), in which we substitute

ζ =
(
w̄ − p0(χ; z0)
pγ0(χ; z0)γ0+1

)1/γ0

, (60)

is single valued on |w̄| = ε, for ε > 0 sufficiently small (depending on χ with
pγ0(χ; z0) 	= 0), we conclude that the function (ζ,χ; z0) �→ Ξ̃2(ζ,χ,Λ0,Λ̄0; z0)
is identically 0. Hence, we must have

H̄(χ, τ) ≡ Ξ1

(
w̄ − p0(χ; z0)
pγ0(χ; z0)γ0+1

, χ, j20H, j
2
0H; z0

)
, (61)

where Ξ1(η, χ,Λ, Λ̃; z0) :=
∑

j≥0Ajγ0(χ,Λ, Λ̃; z0)ηj .
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Next, we decompose each Ajγ0(χ,Λ, Λ̃; z0) uniquely as follows
Ajγ0(χ,Λ,Λ̃; z0) ≡ Bj(χ,Λ,Λ̃; z0)pγ0(χ; z0)j(γ0+1) +

∑

0≤l≤Kj−1

Rjl(Λ,Λ̃; z0)χl,

(62)
where K denotes the order of vanishing of pγ0(z; z0)

γ0+1 at 0. It is not
difficult to see that we have

sup
|χ|≤δ

∥
∥Bj(χ,Λ, Λ̃; z0)

∥
∥ ≤ Cj sup

|χ|≤δ

∥
∥Ajγ0(χ,Λ, Λ̃; z0)

∥
∥ , (63)

for some small δ > 0 and constant C, where ‖v‖ denotes the maximum of
|v1| and |v2| for v ∈ C

2. Hence, the power series
Γ(κ, χ,Λ, Λ̃; z0) :=

∑

j≥0

Bj(χ,Λ, Λ̃; z0)κj (64)

defines a holomorphic function whose domain of definition contains any
point (0, 0,Λ0, Λ̃0; z0) with z0 	= 0 and (z0, 0,Λ0, Λ̃0) in a sufficiently small
neighborhood of {0} × {0} × T(C 2) × T(C 2).

We now wish to show that Ξ1 in (61) can be replaced by Γ with
κ = τ − p0(χ; z0). For this, we decompose the function Ξ1 uniquely as
Ξ1 = Ξ2 + Ξ3, where

Ξ2(η, χ,Λ, Λ̃; z0) :=
∑

j≥0

Bj(χ,Λ, Λ̃; z0)pγ0(χ; z0)j(γ0+1)ηj

Ξ3(η, χ,Λ, Λ̃; z0) :=
∑

j≥0

Rj(χ,Λ, Λ̃; z0)ηj ,
(65)

where Rj(χ,Λ, Λ̃; z0) :=
∑

0≤l≤Kj−1Rjl(Λ, Λ̃; z0)χl is the remainder poly-
nomial in the division (62). Now, observe that Ξ2(η, χ,Λ, Λ̃; z0), with
η = κ/pγ0(χ; z0)γ0+1, coincides with the function Γ(κ, χ,Λ, Λ̃; z0). Since
the right-hand side of (61) is holomorphic in (χ, τ) near 0, it is not difficult
to see that (z, ζ) �→ Ξ3(η, χ,Λ0, Λ̄0; z0) must be identically 0, and that

H̄(χ, τ) ≡ Γ
(
τ − p0(χ; z0), χ, j20H, j20H; z0

)
. (66)

It remains to remark that the right-hand side of (66) is holomorphic in
(χ, τ ; z0) near (0, 0, z̃0) with any z̃0 	= 0 sufficiently small and is independent
of z0. The proof of Theorem 4.1 is complete. �

Proof of Corollary 1.6. The proof can be obtained by repeating the
arguments from [BER1]. �

5 Finite Jet Determination for Solutions of Singular ODEs

The proof of Theorem 1.1 in the infinite type case is based on Theorem 3.1,
on the first author’s results in [E2] (see Theorem 6.1 below) and on the
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following property of solutions of singular ordinary differential equations
which we prove in this section, and which may be of independent interest.
Theorem 5.1. Consider a singular differential equation for an R

n-valued
function y(x, θ), where x ∈ R, θ ∈ R

m, of the form

xγ+1∂xy(x, θ) =
p(x, y(x, θ), θ)
q(x, y(x, θ), θ)

, (67)

where γ ≥ 0 is an integer, p(x, y, θ) and q(x, y, θ) are real-analytic func-
tions (valued in R

n and R, respectively) defined in a neighborhood of 0 in
R × R

n × R
m with q(0, 0, θ) 	≡ 0. Let ŷ(x, θ) be a real-analytic solution of

(67) near 0 with ŷ(0, θ) ≡ 0. Then there exists an integer k ≥ 0 such that,
if y(x, θ) is another solution near the origin with ∂l

xy(0, θ) ≡ ∂l
xŷ(0, θ) for

0 ≤ l ≤ k, then y(x, θ) ≡ ŷ(x, θ).

Proof. We write f(x, y, θ) for the right-hand side of (67). For γ = 0,
the proof is rather simple. Expand both sides of the equation (67) in
powers of x and identify the coefficients of xk. It is not difficult to see
that one may solve the resulting equation for the coefficients ak = ak(θ) of
y(x, θ) in terms of al = al(θ), with l ≤ k − 1, unless k is an eigenvalue of
fy(0, 0, θ). The last possibility does not happen if k is sufficiently large and
θ is outside a countable union Γ of proper real-analytic subvarieties. For
every θ /∈ Γ and y, ŷ satisfying the hypotheses in the theorem, we conclude
that y(x, θ) ≡ ŷ(x, θ). The required statement follows by continuity and
the fact that the complement of Γ is dense in a neighborhood of 0 in R

m.
The details are left to the reader.

For the rest of the proof we assume γ ≥ 1. We shall write y(s) ∈ R
n for

the sth derivative of y(x, θ) in x evaluated at (0, θ) and y(s+1,...,s+l) ∈ R
ln

for the column of the l derivatives y(s+1), . . . , y(s+l).
We shall differentiate (67) in x at (0, θ) and apply the chain rule. Since

y(0, θ) ≡ 0, the derivatives of the right-hand side f(x, y, θ) will be always
evaluated at (0, 0, θ). Hence they will be ratios of real-analytic functions
where the denominator is some power of q(0, 0, θ). We consider the ring of
all ratios of this kind and all polynomials (and rational functions) below will
be understood over this ring (i.e. a polynomial below will be a polynomial
with coefficients in this ring).

By taking the sth derivative (s ≥ γ + 1) of the identity (67) in x,
evaluating at (0, θ), and using the chain rule, we obtain

csy
(s−γ) = Pl(y(1,...,l−1), θ)y(s−l+1,...,s) +Rl,s(y(1,...,s−l), θ) (68)

for any 1 ≤ l ≤ s/2, where cs =
( s
γ+1

)
, Pl is a R

n×nl-valued matrix polyno-
mial in y(1,...,l−1) depending only on l and Rl,s is a R

n-valued polynomial
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in y(1,...,s−l) depending on both l and s. In fact, Pl can be written as
Pl = (P 1

l , . . . , P
l
l ) with each P i

l being an n×n matrix given by the formula

P i
l (y

(1,...,l−1), θ) = (d/dx)l−i
(
fy(x, y(x), θ)

)∣∣
x=0

, i = 1, . . . , l .

We further fix integers t and r satisfying t+1 ≤ (r+1/γ)/2, collect the
identities (68) in blocks for l = (t + 1)γ and s = rγ + 1, . . . , (r + 1)γ and
write them in the form

Cry
((r−1)γ+1,...,rγ) =

∑

0≤j≤t

Qj(y(1,...,(j+1)γ−1), θ)y((r−j)γ+1,...,(r−j+1)γ)

+ Sr,t(y(1,...,(r−t)γ), θ) , (69)

where Cr is the diagonal γn×γn matrix with eigenvalues crγ+1, . . . , c(r+1)γ ,
each of multiplicity n, Qj are R

γn×γn-valued matrix polynomials in
y(1,...,(j+1)γ−1) and St,r is a R

γn-valued polynomial in y(1,...,(r−t)γ) depending
on both t and r. Here we put all the terms containing y(i) with i ≤ (r− t)γ
into St,r.

We first try to solve the system (69) with respect to the γ highest
derivatives y(rγ+1), . . . , y((r+1)γ). We can do this provided the coefficient
matrix Q0(y(1,...,γ−1), θ) is invertible. In general, a solution can be obtained
only modulo the kernel of Q0(y(1,...,γ−1), θ). Here the dimension of the
kernel may change as (y(1,...,γ−1), θ) changes. To avoid this problem we
consider only solutions y(x, θ) of (67) with y(1,...,γ−1) = ŷ(1,...,γ−1) (as we
may by a priori assuming k ≥ γ − 1). For these solutions, we obtain from
(69) an identity

y(rγ+1,...,(r+1)γ) = Tr,t(y(1,...,rγ), θ) mod kerQ0 (70)

where Tr,t is a R
γn-valued polynomial in y(1,...,rγ) andQ0:=Q0(ŷ(1,...,γ−1), θ).

Here two cases are possible. If the kernel of Q0 is trivial for some θ, it is
trivial for θ outside a proper real-analytic subvariety. Then for such values
of θ, (70) can be iterated to determine all derivatives y(s), for s ≥ γ + 1, in
terms of y(1,...,γ). The proof is complete by continuity.

If the kernel of Q0 is nontrivial for all θ, it has a constant dimension for
θ outside a proper real-analytic subvariety. Then we consider the system
(69) with r replaced by r+1. Here the γ-tuple of new unknown derivatives
y((r+1)γ+1,...,(r+2)γ) with the coefficient matrix Q0 is involved. However,
we can still extract some information when the image imQ0 is a proper
subspace of R

γn (which happens precisely when kerQ0 	= {0}), namely

(Cr+1 −Q1(y(1,...,2γ−1), θ))y(rγ+1,...,(r+1)γ) =
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∑

2≤j≤t

Qj(y(1,...,(j+1)γ−1), θ)y((r−j+1)γ+1,...,(r−j+2)γ)

+ Sr+1,t(y(1,...,(r−t+1)γ), θ) +Q0y((r+1)γ+1,...,(r+2)γ). (71)
We now use the explicit form of Cr+1 to conclude that, for every r

sufficiently large, the matrix
Cr+1 −Q1(y(1,...,2γ−1), θ) (72)

on the left-hand side is invertible for y(1,...,2γ−1) = ŷ(1,...,2γ−1) and for θ
outside a proper subvariety. By taking the union of these subvarieties for
different r we see that, for each θ outside a countable union of proper
subvarieties, the matrices (72) are invertible for all r. We write

A1
r+1(y

(1,...,2γ−1), θ) :=
(
Cr+1 −Q1(y(1,...,2γ−1), θ)

)−1
.

Thus A1
r+1 is a rational function in y(1,...,2γ−1). By applying

A1
r+1(y

(1,...,2γ−1), θ) to both sides of (71), we obtain a rational expression
for y(rγ+1,...,(r+1)γ) in terms of lower order derivatives modulo the linear
subspace

V 1
r (y(1,...,2γ−1, θ) := A1

r+1(y
(1,...,2γ−1), θ) imQ0 ⊂ R

γn. (73)
Previously we fixed the first derivatives y(1,...,γ−1). In this step, we further
assume that y(1,...,2γ−1) = ŷ(1,...,2γ−1). We can then drop the dependence of
Q1, A1

r+1 and V 1
r on the derivatives as we did for Q0. Taking also (70) into

account, we conclude that y(rγ+1,...,(r+1)γ) is determined modulo
kerQ0 ∩ V 1

r . (74)
If this space is zero-dimensional (for some θ), the two equations (70) and
(71) determine y(rγ+1,...,(r+1)γ) completely and yield a polynomial expres-
sion for these derivatives in terms of lower derivatives (for this value of θ).

We now observe that we may write A1
r+1 = c−1

(r+2)γ
B1

r+1, where the
matrix B1

r+1 tends to the identity (for θ fixed) as r → ∞. Moreover the
linear operator B1(ε) := B1

r+1, where ε := 1/r (and the integers r in B1
r+1

are replaced by a continuous variable r in the obvious way), is a ratio of
analytic functions for (ε, θ) in a neighborhood of 0. By Cramer’s rule,
there exist real-analytic functions v1(θ), . . . , vµ(θ) and uµ+1(θ), . . . , unγ(θ)
that represent bases for kerQ0 and for imQ0 respectively for every θ outside
a proper subvariety. If we write ∆(ε, θ) for the determinant of the matrix
of nγ-vectors

v1, . . . , vµ, B
1uµ+1, . . . , B

1unγ , (75)
then the intersection (74) is positive dimensional if and only if ∆(ε, θ) van-
ishes at (1/r, θ). Since ∆(ε, θ) is real-analytic near 0, we conclude that
either ∆(ε, θ) is identically 0 or there exists r0 such that ∆1(1/r, θ) 	= 0



568 P. EBENFELT, B. LAMEL AND D. ZAITSEV GAFA

for r ≥ r0 and for θ outside a proper subvariety Γ1
r. In the second case

the intersection (74) is zero-dimensional for r ≥ r0 and θ /∈ Γ1
r and we

obtain y(rγ+1,...,(r+1)γ) as a polynomial expression in lower derivatives. By
a simple inductive argument and the analyticity of y and ŷ, it follows that
y(x, θ) = ŷ(x, θ) for all x and all θ outside the union of Γ1

r, r ≥ r0. The
desired statement follows by continuity, since the union of Γ1

r’s is nowhere
dense.

Thus, we may assume that ∆(ε, θ) ≡ 0. In this case, we consider (69)
with r replaced by r + 2. By solving (71), with r + 1 in place of r, for
y((r+1)γ+1,...,(r+2)γ) (modulo imQ0(y1,...,γ−1, θ)), we conclude that

y((r+1)γ+1,...,(r+2)γ)

= A1
r+2

( ∑

2≤j≤t

Qj(y(1,...,(j+1)γ−1), θ)y((r−j+2)γ+1,...,(r−j+3)γ)

+ Sr+2,t(y(1,...,(r−t+1)γ), θ)
)

+A1
r+2Q

0y((r+2)γ+1,...,(r+3)γ), (76)

where A1
r+2 and Sr+2,t are defined as above. By applying Q0 to both sides

and substituting the right-hand side for Q0y((r+1)γ+1,...,(r+2)γ) in (71), we
deduce that
D2

r+1(y
(1,...,3γ−1), θ)y(rγ+1,...,(r+1)γ) = R2

r+1(y
(1,...,rγ), θ) mod Q0(V 1

r+1) ,
(77)

where V 1
r+1 is as defined above and D2

r+1 is the invertible (for r large enough
and θ outside a proper subvariety Γ2

r, provided that we have y(1,...,3γ−1) =
ŷ(1,...,3γ−1)) matrix

D2
r+1(y

(1,...,3γ−1)) := Cr+1 −Q1 −Q0A1
r+2Q

2(y(1,...,3γ−1), θ) . (78)
As before we assume in this step that y(1,...,3γ−1) = ŷ(1,...,3γ−1) and drop the
dependence on these derivatives.

Now observe that the assumption that ∆(ε, θ) ≡ 0 (which is equivalent
to the intersections (74) being nontrivial for all r sufficiently large) implies
that the space Q0(V 1

r+1) is of strictly lower dimension than V 1
r+1. This is a

crucial observation. Let us write A2
r+1 for the inverse of D2

r+1. It follows
that we can solve (77) for y(rγ+1,...,(r+1)γ) modulo the subspace

V 2
r := A2

r+1Q
0(V 1

r+1) . (79)
If the intersection

kerQ0 ∩ V 2
r (80)

is zero-dimensional, we can find a polynomial expression for y(rγ+1,...,(r+1)γ)

in terms of lower derivatives by using equation (70). We claim again that
this intersection will be either zero-dimensional for all sufficiently large r
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and θ outside a proper subvariety Γ3
r or positive-dimensional for all suffi-

ciently large r and all θ. The argument is as before. We can detect positive
dimensionality of the intersection (80) by the vanishing of suitable deter-
minants formed by the vectors in (75) with B1 replaced by B2 = B2(ε),
where B2(ε) (which also of course depends on θ) is defined as follows. Let
us factor the scalar c−1

(r+2)γ in A2
r+1, writing A2

r+1 = c−1
(r+2)γB

2
r+1. Then we

define B2(ε) := B2
r+1Q

0B1
r+2, where as before ε := 1/r. It is not difficult to

see that B2 is analytic in (ε, θ) near 0 with B2(0, θ) equal to the identity.
Since any determinant formed by the vectors in (75) with B1 replaced by
B2 will be analytic, the claim now follows as above.

As mentioned above, if the intersection (80) is trivial for all sufficiently
large r, we are done. If not, we must go iterate the procedure above, and
start with the equation (69) with r replaced by r + 3. In this way we will
obtain a subspace V 3

r (y(1,...,4γ−1), θ) (in a way analogous to that yielding
V 2

r (y(1,...,3γ−1), θ)). By the same argument as above, the fact that we are
forced to go to the next iteration (i.e. the intersection (80) is nontrivial
for all large r) implies that V 3

r has strictly lower dimension than V 2
r . The

crucial observation is that, if we are forced to make another iteration, the
dimension of the subspaces V j

r := V j
r (ŷ(1,...,(j+1)γ−1), θ) drops. Hence, the

process will terminate after at most nγ steps. The details of the iterations
are left to the reader.

Summarizing, we obtain a linear system for y(rγ+1,...,(r+1)γ) (providing
r is large enough) in terms of lower order derivatives and the matrix co-
efficient of y(rγ+1,...,(r+1)γ) is polynomial in y(1,...,(nγ+1)γ) and is invertible
for θ outside a countable union of proper subvarieties. Then the proof is
completed by the analyticity of y(x, θ) and ŷ(x, θ) and by continuity as
before. �

6 Finite Jet Determination in the Infinite Type Case;
Proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1. We shall only prove
the implication (i)⇒(ii). The opposite implication is well known.

If M is of finite type at p, the statement is a special case of Theorem 1.4.
Hence, to complete the proof of Theorem 1.1, we may assume that the
hypersurface M ⊂ C

2 is of infinite type at p. This is equivalent to the
property that the Segre variety E of p is contained in M . As before we
denote the same objects associated to another real-analytic hypersurface
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M ′ ⊂ C
2 by ′. Given M ′, H1 and H2 as in Theorem 1.1, we set p′ := H1(p).

It follows that M ′ is also of infinite type at p′. The proof of Theorem 1.1
in this case is based on Theorem 3.1 and on the following result.
Theorem 6.1. Let h0 be a C∞-smooth CR-diffeomorphism between
real-analytic hypersurfaces M and M ′ in C

2. Suppose that M is of infinite
type at a point p ∈M and set p′ := h0(p) ∈ M ′. Choose local coordinates
y = (x, s) ∈ R

2 × R on M and y′ = (x′, s′) ∈ R
2 × R on M ′ vanishing at

p and p′, respectively, such that the Segre varieties E ⊂ M and E′ ⊂ M ′

at p and p′ are locally given by s = 0 and s′ = 0, respectively. Then there
exists an integer m ≥ 1 such that, if h is a C∞-smooth CR-diffeomorphism
between open neighborhoods of p and p′ in M and M ′ respectively with
h(p) sufficiently close to p′ and we set g(y) := s′(h(y)), then there is a
(unique) C∞-smooth function vh(y) on M near p satisfying

sm∂sg(y) ≡ vh(y)g(y)m. (81)
For any such h we write

uh(y) :=
(
(∂xih(y))1≤i≤2, s

m∂sf(y), vh(y)
) ∈ R

9,

where f(y) := x′(h(y)), and set

uα
h(y) := (sm∂s)α0∂α1

x1
∂α2

x2
uh(y) (82)

for any multi-index α = (α0, α1, α2) ∈ Z3
+. Then there exist real-analytic

functions q(y) on M near p and q′(y′) on M ′ near p′ with q(x, 0) and q′(x′, 0)
both not identically zero, an open neighborhood Ω ⊂ J2(M,R9)p×M ′×M
of ((uβ

h0(p))0≤|β|≤2, p
′, p), and, for every multi-index α ∈ Z

3
+ with |α| = 3,

real-analytic functions rα(Λ, y′, y) on Ω such that, for any h as above with
(
(uβ

h(p))0≤|β|≤2, h(p), p
) ∈ Ω , (83)

the equation

uα
h(y) ≡ rα((uβ

h(y))0≤|β|≤2, h(y), y)
q(y)q′(h(y))

(84)

holds at every y ∈M near p for which the denominator does not vanish.

At points p ∈ M and p′ ∈ M ′ where q(p) 	= 0 and q′(p′) 	= 0 (the
latter of which is, in fact, a consequence of the former), Theorem 6.1 is
a reformulation of Theorem 2.1 in [E2]. Theorem 6.1, as stated above,
follows by repeating the proof of Theorem 2.1 in [E2] at a general point p,
accepting the presence of a denominator which may vanish at p. The result
is the conclusion of Theorem 6.1. We shall omit the details and refer the
reader to the proof in [E2] for inspection.
Proof of Theorem 1.1. Let H1,H2 be as in Theorem 1.1 with jkpH

1 =
jkpH

2, for some k ≥ 2 (which will be specified later). Observe that, for any
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local biholomorphism H : (C 2, p) → C
2 sending M into itself, the restric-

tion h := H|M is a local CR-diffeomorphism between open neighborhoods
of p and p′ := H(p) in M . We shall write hj := Hj|M , j = 1, 2. If we take
h0 := h1, h := h2 and M ′ = M in Theorem 6.1, then h satisfies (83) and
hence the equation (84). For an h as in Theorem 6.1, we set

Uh(y) :=
(
(uβ

h(y))0≤|β|≤2, h(y)
)
.

Equations (81) and (84) then imply that

sm∂sUh(y) ≡ R(Uh, y)
q(y)q′(h(y))

(85)

for some real-analytic functionR(U, y) defined in a neighborhood of (Uh0 , 0).
The assumption jkpH

1 ≡ jkpH
2 and Theorem 3.1 imply that

jk−1
Z H1 ≡ jk−1

Z H2 , ∀Z ∈ E , (86)
near p. Let us write, for j = 1, 2,

Uhj (x, s) =
∞∑

k=0

U j
k(x)sk. (87)

We conclude, by the construction of Uh and (86), that U1
l (x) ≡ U2

l (x) for
l ≤ k − 4. To complete the proof of Theorem 1.1, consider the functions
Ũhj(x, s) := Uhj(x, s) − Uhj (x, 0), for j = 1, 2, which satisfy Ũhj (x, 0) = 0.
For k ≥ 4, we have Uh1(x, 0) = Uh2(x, 0) and hence both Ũh1 and Ũh2

satisfy the same system of differential equations

sm∂sŨh(y) =
R̃(y, Ũh)

q(y)q′(h(y))
, (88)

where R̃(y, Ũ) := R(y, Ũ+U1(x, 0)), as does any other Ũh arising from a CR
diffeomorphism h with Uh(x, 0) = U1(x, 0). Recall that h(y) is one of the
components of Uh. The existence of the integer k such thatH1 ≡ H2 (which
is equivalent to h1 ≡ h2) if jkpH1 = jkpH

2 now follows from Theorem 5.1,
although the choice of the integer k appears to depend on the mapping H1.
However, we shall show that one can find a k that works for every H1. Let
k be the integer obtained by the above procedure applied to H1,H2 where
H1(Z) is the identity mapping id. We conclude that ifH : (C 2, p) → (C 2, p)
sends M into itself and jkpH = id, then H ≡ id. We claim that the same
number k satisfies the conclusion of Theorem 1.1 for any H1, H2. Indeed,
for any H1, H2 as in Theorem 1.1, the mapping H := (H1)−1 ◦H2 sends
(M,p) into itself and satisfies jkpH = id. Hence, by the construction of k,
we must have (H1)−1 ◦ H2 ≡ id which proves the claim. This completes
the proof of Theorem 1.1. �
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zoni 7, 35131 Padova, Italy zaitsev@math.unipd.it

Submitted: May 2002
Revision: October 2002


