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1. Introduction

One of the main objectives of this paper is to address the following question: When is the global
CR automorphism group of a CR manifold a Lie group in an appropriate topology? We give here
sufficient geometric conditions on a CR manifold M to guarantee that the group of all its smooth
(and real-analytic when M is real-analytic) CR automorphisms has the structure of a (finite-
dimensional) Lie group compatible with its natural topology. The results of this paper are obtained
by first establishing general theorems on Lie group structures for subgroups of diffeomorphisms
of a given smooth or real-analytic manifold, and then applying these results together with recent
work concerning jet parametrization and complete systems for CR automorphisms. We also prove
a partial converse in the real-analytic case: If the real-analytic CR automorphism group of a
connected real-analytic CR manifold M has the structure of a Lie group such that its isotropy
group at a point p ∈ M has finitely many connected components, then the (real-analytic) CR
automorphisms satisfy so-called “finite jet determination” at p. That is, there is an integer k such
that two automorphisms of M coincide if and only if their derivatives at p up to order k are the
same.

In Section 2 we define a notion of a complete system for a set of diffeomorphisms of a manifold
and show (Proposition 2.2) that it is equivalent to a notion of a jet parametrization. A closed
subgroup of the diffeomorphism group of a connected manifold M satisfying a complete system at
every point has a Lie group structure; this is the content of Theorem 2.3. Analogous definitions and
results are also obtained for subsets of germs of diffeomorphisms fixing a point (Proposition 2.8
and Theorem 2.9). The notion of complete system we use here is motivated by recent results
establishing this property for CR automorphisms, due to Ebenfelt [E01] and Kim and the fourth
author [KZ02] (see also Han[H97]). In the real-analytic case, results on jet parametrization were
obtained by the first two authors jointly with Ebenfelt [BER97, BER99a] and by the fourth
author [Z97]. The partial converse mentioned above is stated in both global and local cases in
Theorems 2.4 and 2.10.

Sections 3, 4 and 5 are devoted to the proofs of the results stated in Section 2. In Section 6 we
recall basic definitions and properties of abstract and embedded CR manifolds that will guarantee
the existence of a Lie group structure on the group of CR automorphisms. In particular, we recall
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the definitions of finite type and finite nondegeneracy (generalizing that of Levi-nondegeneracy
for a real hypersurface in a complex manifold). One motivation for considering the conditions of
finite type and finite nondegeneracy is that they hold for some important examples such as the
“light cone tube” {(Re z1)

2 + (Re z2)
2 = (Re z3)

2}, for which Levi-nondegeneracy does not hold.
Another motivation is that an arbitrary smooth or real-analytic embedded generic submanifold in
CN can always be perturbed to satisfy these two conditions (see the forthcoming paper [BRZ04]).
In contrast, a general real hypersurface in CN cannot necessarily be deformed into one which is
Levi-nondegenerate at every point.

Theorem 6.2 states that the global CR automorphism group of a CR manifold satisfying the
conditions of finite type and finite nondegeneracy at every point has a Lie group structure. (For
Levi-nondegenerate hypersurfaces, the latter result follows from the work of E. Cartan [C32],
Tanaka [T67], Chern-Moser [CM74] and Kobayashi [Ko72], see also Burns-Shnider [BS77].) In
Section 6 we also briefly survey results on the group of germs of local CR automorphisms fixing a
point of a CR manifold. In particular, under the two nondegeneracy conditions mentioned above,
such a group has a Lie group structure in the real-analytic case but may not be a Lie group in
the smooth case.

2. Complete systems and jet parametrizations for diffeomorphisms

If M and M ′ are two smooth (resp. real-analytic) manifolds, we denote by C∞(M,M ′) (resp.
Cω(M,M ′)) the set of smooth (resp. real-analytic) maps from M to M ′. We equip C∞(M,M ′)
(resp. Cω(M,M ′)) with its natural topology, which we shall now describe. Let n = dimM and
n′ = dimM ′. To simplify notation, we write r for ∞ or ω, depending on whether the manifolds
M and M ′ are smooth or real-analytic. For any local coordinate charts (U, ϕ) and (V, ψ) on M
and M ′ respectively, denote by

Cr(M,M ′;U, V ) :=
{
f ∈ Cr(M,M ′) : f(U) ⊂ V

}
,

and define the map ΘU,ϕ;V,ψ by

Cr(M,M ′;U, V ) 3 f 7→ ΘU,ϕ;V,ψ(f) := ψ ◦ f ◦ ϕ−1 ∈ Cr(ϕ(U),Rn′

).

We equip Cr(M,M ′;U, V ) with the weakest topology for which the ΘU,ϕ;V,ψ is continuous. (Here,
for an open set Ω ⊂ Rn, the vector space C∞(Ω,Rn′

) is equipped with the Fréchet space topology
of uniform convergence of the mappings and their derivatives on compact sets. The vector space
Cω(Ω,Rn′

) is equipped with its usual topology of inductive limit of Fréchet spaces of holomorphic
maps in open neighborhoods in Cn of Ω ⊂ Rn ⊂ Cn.) We may now describe the topology of
Cr(M,M ′) as follows. A subset O ⊂ Cr(M,M ′) is open if and only if for all choices of local charts
(U, ϕ) and (V, ψ) as above, O ∩ Cr(M,M ′;U, V ) is open in Cr(M,M ′;U, V ).

We equip Diff(M) (resp. Diffω(M)), the subset of all smooth (resp. real-analytic) maps that are
diffeomorphisms from M onto itself with the topology induced from C∞(M,M) (resp. Cω(M,M)).
Note that if a sequence (fj) converges to f in Diff(M) (resp. Diffω(M)) then the sequence (f−1

j )

converges to f−1 in the same topology. (See e.g. Lemma 3.2 below.) It can be further shown that
Diff(M) (resp. Diffω(M)) is a topological group.
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For a nonnegative integer k, we use the notation Jk(M,M ′) for the space of all k-jets of smooth
maps from M to M ′ and write for simplicity Jk(M) := Jk(M,M) (see e.g. [GG73] for basic
definitions and properties). Furthermore, we denote by Gk(M) ⊂ Jk(M) the open subset of all
invertible jets. If p, p′ ∈ M , we denote by Jkp (M) ⊂ Jk(M) and Gk

p(M) ⊂ Gk(M) the subsets of

jets with source p, and by Gk
p,p′(M) ⊂ Gk

p(M) the subset of jets with source p and target p′. Note

that Gk
p,p(M) is a submanifold of Gk(M) equipped with a Lie group structure whose multiplication

is given by composition. For a jet Λ ∈ Jk(M,M ′), denote by Λ(s) its projection to Js(M,M ′) for
any 0 ≤ s ≤ k. Given any smooth map f : M → M ′ and x ∈ M , we denote by jkxf ∈ Jk(M,M ′)
its k-jet at x.1

2.1. Results for global diffeomorphisms. Our main tools for establishing Lie group structures
on subgroups of Diff(M) and Diffω(M) are the so-called complete systems and closely related
notions of jet parametrizations.

Definition 2.1. Let M be a smooth (resp. real-analytic) manifold. A subset S ⊂ Diff(M) (resp.
S ⊂ Diffω(M)) is said to satisfy a smooth (resp. real-analytic) complete system at a point x0 ∈M if
there exists a nonnegative integer k such that, for every Λ0 ∈ Gk

x0
(M), there exists a neighborhood

Ω of Λ0 in Gk(M) and a smooth (resp. real-analytic) map Φ: Ω → Jk+1(M) such that

(2.1) jk+1
x f = Φ(jkxf),

for any x ∈ M and f ∈ S with jkxf ∈ Ω. In this case we shall say that the order of the complete
system (2.1) is k + 1. We say that S satisfies a complete system if it satisfies a complete system
at every point in M .

The reader should be warned that, for a given f ∈ S in the above definition, the open subset
of x ∈M for which jkxf ∈ Ω, may be empty or, even if not empty, may not contain the point x0.

The following proposition gives a necessary and sufficient condition for S to satisfy a complete
system of order k + 1 at x0 in terms of a local k-jet parametrization of mappings in S.

Proposition 2.2. In the setting of Definition 2.1 the subset S satisfies a smooth (resp. real-
analytic) complete system of order k + 1 at x0 ∈ M if and only if, for every Λ0 ∈ Gk

x0
(M), there

exist neighborhoods Ω′ of x0 in M , Ω′′ of Λ0 in Gk(M), and a smooth (resp. real-analytic) map
Ψ: Ω′ × Ω′′ →M such that

(2.2) f(x) = Ψ(x, jkyf),

for any x ∈ Ω′, any y ∈M and any f ∈ S with jkyf ∈ Ω′′.

As usual we shall say that a Lie group G acts smoothly (resp. real-analytically) on a smooth
(resp. real-analytic) manifold M if the action map G ×M → M is smooth (resp. real-analytic).
One of the main results of this section is the following.

1If M is an open subset of Rn, and M ′ an open subset of Rn
′

, then Jk(M, M ′) ∼= M ×M ′ ×RN , where N is n′

times the number of multiindices α ∈ Nn, with 0 < |α| ≤ k, and jk
xf =

(
x, f(x), (∂αf(x))0<|α|≤k

)
.
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Theorem 2.3. Let M be a smooth (resp. real-analytic) connected manifold and G ⊂ Diff(M)
(resp. G ⊂ Diffω(M)) be a closed subgroup satisfying a smooth (resp. real-analytic) complete
system. Then G, equipped with the induced topology of Diff(M) (resp. Diffω(M)), has a (unique)
structure as a Lie group acting smoothly (resp. real-analytically) on M .

Note that if a topological group has a Lie group structure, the latter is necessarily unique (see
e.g. [V74]). The proofs of Proposition 2.2 and Theorem 2.3 will be given in Section 3. We also
have the following partial converse of Theorem 2.3.

Theorem 2.4. Let M be a connected real-analytic manifold and G ⊂ Diffω(M) be a subgroup
equipped with a Lie group structure acting real-analytically on M . Fix a point p ∈M and assume
that the Lie subgroup Gp := {g ∈ G : g(p) = p} has finitely many connected components. Then
there exists an integer k such that for any two elements g1, g2 ∈ G,

g1 = g2 if and only if jkpg1 = jkpg2.

Observe that the assumption that Gp has finitely many components is automatically satisfied
when M is a real-algebraic manifold and G is a real-algebraic group acting algebraically on M .

The proof of Theorem 2.4 will be given in Section 5. We would like to point out that the conclu-
sion of Theorem 2.4 does not hold without the assumption that Gp has finitely many components,
as can be seen by the following example.

Example 2.5. Let M := R2, p = 0,

G :=
{
g : R

2 → R
2 : g(x, y) = (x, y + P (x)), P (x) ∈ Z[x]

}
,

where Z[x] denotes the ring of polynomials in one variable with integer coefficients. It is easy to
see that the topology of Diffω(M) induces the discrete topology on G ⊂ Diffω(M). Hence G, as
well as Gp, are (zero-dimensional) Lie groups with infinitely many components, and the conclusion
of Theorem 2.4 obviously does not hold.

We should mention that Theorem 2.4 does not hold in the smooth category, i.e. with M a smooth
manifold and G ⊂ Diff(M), as can be easily seen by the following modification of Example 2.5.

Example 2.6. Let M := R2, p = 0,

G :=
{
g : R

2 → R
2 : g(x, y) = (x, y + cχ(x)), c ∈ R

}
,

where χ(x) is a smooth nonzero real function on R vanishing of infinite order at 0. It is easy to see
that G ⊂ Diff(M) is a closed subgroup and a Lie group (isomorphic to R) in the induced topology.
However the conclusion of Theorem 2.4 does not hold.

In the context of Theorem 2.4 one can ask whether the stronger conclusion that G satisfies a
complete system at p also holds. The authors know of no example where finite jet determination
(in the sense of Theorem 2.4) holds without the existence of a complete system.

2.2. Results for germs of diffeomorphisms. We consider now local versions of Theorems 2.3
and 2.4. Let M be again a smooth (resp. real-analytic) manifold and fix a point p ∈ M . We
denote by Diff(M, p) (resp. Diffω(M, p)) the germs at p of all local smooth (resp. real-analytic)
diffeomorphisms of M fixing p. Similarly denote by C∞(M, p) (resp. Cω(M, p)) the germs at p of
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all smooth (resp. real-analytic) maps fixing p. We equip the latter sets with the following topology.
A subset O ⊂ C∞(M, p) (resp. O ⊂ Cω(M, p)) is said to be open if and only if, for every open
neighborhood U of p in M , the subset {f ∈ C∞(U,M) : [f ] ∈ O} (resp. {f ∈ Cω(U,M) : [f ] ∈ O})
is open in C∞(U,M) (resp. Cω(U,M)), where [f ] denotes the germ of f at p. We further equip
Diff(M, p) ⊂ C∞(M, p) (resp. Diffω(M, p) ⊂ Cω(M, p)) with the induced topology. In contrast
to Diffω(M, p), the topology on Diff(M, p) is not Hausdorff and therefore will not be considered.
Note that a sequence (fn) in Diffω(M, p) converges to f if f and fn have representatives (denoted
by the same letters) defined in a fixed open neighborhood U of p in M and such that fn → f in
Cω(U,M).

The following is a local version of Definition 2.1.

Definition 2.7. Let M be a smooth (resp. real-analytic) manifold and p ∈ M . A subset S ⊂
Diff(M, p) (resp. S ⊂ Diffω(M, p)) is said to satisfy a smooth (resp. real-analytic) local complete
system if there exists a nonnegative integer k such that, for every Λ0 ∈ Gk

p(M), there exists a

neighborhood Ω of Λ0 in Gk(M) and a smooth (resp. real-analytic) map Φ: Ω → Jk+1(M) such
that

(2.3) jk+1
x f = Φ(jkxf),

for any f representing a germ in S with jkpf ∈ Ω and x ∈M sufficiently close to p.

Note that if f is a germ at p ∈M of a smooth map from M into itself, then jkf : x 7→ jkxf is a
germ at p of a section from M to Jk(M). If Φ: Ω → Jk+1(M) is as in Definition 2.7 with jkpf ∈ Ω,

then Φ ◦ (jkf) is a germ at p of a smooth map from M to Jk+1(M). Equality (2.3) simply means
the equality of the two germs, jk+1f and Φ ◦ (jkf), at p.

As in the global case in Proposition 2.2, we have the following characterization of local complete
systems in terms of local jet parametrizations.

Proposition 2.8. In the setting of Definition 2.7 the subset S ⊂ Diff(M, p) (resp. Diffω(M))
satisfies a smooth (resp. real-analytic) local complete system if and only if there exists an integer
k such that, for every Λ0 ∈ Gk

p(M), there exist neighborhoods Ω′ of p in M , Ω′′ of Λ0 in Gk
p(M),

and a smooth (resp. real-analytic) map Ψ: Ω′ × Ω′′ →M such that

(2.4) f(·) = Ψ(·, jkpf)

for any f ∈ S with jkpf ∈ Ω′′, where the equality in (2.4) holds in the sense of germs at p.

For a subgroup G ⊂ Diffω(M, p) equipped with a Lie group structure, we shall say that G acts
real-analytically on M if, for any g0 ∈ G, there is an open neighborhood U ′ × U ′′ of (p, g0) in
M ×G and a real-analytic map θ : U ′ × U ′′ → M such that for any g ∈ U ′′, the germ at p of the
map x 7→ θ(x, g) coincides with g.

We now state the following local version of Theorem 2.3.

Theorem 2.9. Let M be a real-analytic manifold and p ∈ M . Let G ⊂ Diffω(M, p) be a closed
subgroup satisfying a smooth (resp. real-analytic) local complete system. Then G, equipped with the
induced topology of Diffω(M, p), has a (unique) structure as a Lie group acting real-analytically on
M .
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The proofs of Proposition 2.8 and Theorem 2.9 will be given in Section 4. As in the global case
we also have the following local analogue of Theorem 2.4.

Theorem 2.10. Suppose that M is a real-analytic manifold, and let p be a point in M . Let
G ⊂ Diffω(M, p) be a subgroup equipped with a Lie group structure acting real-analytically on M .
Assume that G has finitely many connected components. Then there exists an integer k such that
for any two elements g1, g2 ∈ G,

g1 = g2 if and only if jkpg1 = jkpg2.

The proof of Theorem 2.10 will be given in Section 5.

3. Lie group structures for global diffeomorphisms

In this section we shall give proofs of the results about subsets of (global) diffeomorphisms
stated in Section 2.

Proof of Proposition 2.2. We start by assuming that (2.2) holds in the setting of the proposition.
By differentiating (2.2) we obtain the complete system (2.1) with

Ω := {jkxh ∈ Gk(M) : x ∈ Ω′, jkxh ∈ Ω′′}, Φ(jkxh) := jk+1
x Ψ(·, jkxh)

proving one implication of the proposition.
To prove the converse, we now assume that (2.1) holds. Let x′0 ∈ M be the target of the given

jet Λ0. We take local coordinates (x1, . . . , xn) (resp. (x′1, . . . , x
′
n)) on M vanishing at x0 (resp. at

x′0). By shrinking Ω if necessary, we may assume that Ω ⊂ Gk(M) is a coordinate neighborhood
of Λ0 with respect to the induced coordinates on Jk(M). Hence an element Λ ∈ Ω has coordinates
(x,Λα)0≤|α|≤k with x,Λα ∈ Rn. Here α is a multiindex in Zn

+. It follows from (2.1) that we have,
in particular,

(3.1) ∂αf(x) = Φα

(
x, (∂βf(x))0≤|β|≤k

)
, |α| = k + 1,

where Φα is a smooth (resp. real-analytic) function defined in Ω. By setting fβ(x) := ∂βf(x), we
obtain from (3.1) a system of the form

(3.2) ∂xj
fβ(x) = rjβ

(
x, (fγ(x))0≤|γ|≤k

)
, 1 ≤ j ≤ n, 0 ≤ |β| ≤ k.

For l = 1, . . . , n, denote by χl(y, t,Λ) the unique solution of the initial value problem for the
ordinary differential equation

(3.3)
dg

dt
(t) = rl(y1, . . . , yl−1, t, yl+1, . . . , yn, g(t)), g(yl) = Λ,

where g(t) = (gβ(t))0≤|β|≤k with each gβ(t) being an Rn-valued function of one variable. Similarly
rl = (rlβ) with rjβ given by (3.2) and Λ = (Λβ) with Λβ ∈ Rn. It follows from the standard theory
of ordinary differential equations with parameters that the function χl is uniquely determined for
(y, t,Λ) = (y1, . . . , yn, t,Λ) near (0, 0,Λ0) and is smooth (resp. real-analytic). Using the notation
us := (x1, . . . , xs−1, ys, . . . , yn), s = 1, . . . , n, (and hence u1 = y), we define

χ(x, y,Λ) := χn(un, xn, . . . χ
2(u2, x2, χ

1(u1, x1,Λ)) . . .).
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Hence χ(x, y,Λ) = (χβ(x, y,Λ))0≤|β|≤k is again defined for (x, y,Λ) sufficiently close to (0, 0,Λ0).
We claim that the component Ψ(x, y,Λ) := χ0(x, y,Λ) satisfies the desired conclusion of the
proposition. Indeed, if f ∈ S and (x, jkyf) is sufficiently close to (x0,Λ0) (independently of the
choice of f), then (2.1) and hence (3.2) is satisfied. Thus g(t) := (fβ(y1, . . . , yl−1, t, yl+1, . . . , yn))
solves the initial value problem (3.3) with Λ = (fβ(y)). Hence (fβ(x)) = χ(x, y, (fγ(y)) by the
construction of χ. The claim follows by taking β = 0. The proof of the proposition is complete. �

We shall now give the proof of Theorem 2.3 in the smooth case. We will not give the details of
the proof of the real-analytic case, since it is completely analogous. We start with the following
proposition, which will be needed for the proof of the theorem.

Proposition 3.1. Let the assumptions of Theorem 2.3 be satisfied. Then, for any p ∈ M , there
exists an integer k ≥ 1 such that the mapping

(3.4) jkp : G→ Gk
p(M), g 7→ jkpg,

is a homeomorphism onto a closed subset of Gk
p(M).

The following known consequence of the implicit function theorem will be used in the proof of
Proposition 3.1.

Lemma 3.2. Let U ⊂ RN be an open set and fn : U → RN a sequence of smooth (resp. real-
analytic) maps which converges to a smooth (resp. real-analytic) map f in the C∞(U,RN) (resp.
Cω(U,RN)) topology. Let p ∈ U and assume that the Jacobian Jacf(p) 6= 0. Then there exists an
open neighborhood V ⊂ RN of f(p) such that f−1 and f−1

n are defined in V for n sufficiently large.
Moreover the sequence (f−1

n ) converges to f−1 in the topology of C∞(V,RN) (resp. Cω(V,RN )).

The main step in the proof of Proposition 3.1 is given by the following lemma.

Lemma 3.3. Let G satisfy the assumptions of Theorem 2.3. Fix p ∈ M and assume that G
satisfies a complete system of order k + 1 at p with k ≥ 1. If (fn) is a sequence in G with
limn→∞ jkpfn = λ ∈ Gk

p(M), then fn converges to an element f in G (and hence jkpf = λ).

Proof. We use Proposition 2.2 with x0 = p and Λ0 = λ. Let Ω′, Ω′′ and Ψ be given by the
proposition. For n large enough we have jkpfn ∈ Ω′′. Hence for such n we have

(3.5) fn(x) = Ψ(x, jkpfn), for all x ∈ Ω′.

When n → ∞ the right hand side of (3.5) converges to f [p](x) := Ψ(x, λ) in C∞(Ω′,M). We
conclude from (3.5) that the sequence (fn) converges to f [p] in C∞(Ω′,M). Since this implies, in
particular, that limn→∞ jkpfn = jkpf

[p] = λ, we conclude that the Jacobian Jacf [p](p) 6= 0.
Denote by O the set of points q ∈M such that the sequence (fn) converges in the C∞ topology

in a neighborhood of q and such that Jac(lim fn)(q) 6= 0. It is clear that O is open and contains
p by the above argument. We must show that O is closed. For this, let q0 be in the closure of
O in M . We shall apply Proposition 2.2 with x0 = q0, k0 being the corresponding integer (i.e.
S satisfies a complete system of order k0 + 1 at x0) , and Λ0 = jk0x0

id ∈ Gk0
x0

(M), where id is the
identity mapping on M . We let again Ω′, Ω′′ and Ψ be given by Proposition 2.2 for the latter
choice of x0 and Λ0. Fix q ∈ O such that jk0q id ∈ Ω′′. Set f [q](x) := limn→∞ fn(x) which is defined
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in a neighborhood of q by the definition of O. By Lemma 3.2, it follows that there exists n0 such
that for n,m ≥ n0, the following holds:

jk0q (f−1
n ◦ fm) ∈ Ω′′, jk0q (f−1

n ◦ f [q]) ∈ Ω′′.

Therefore we have by Proposition 2.2,

f−1
n0

(fm(x)) = Ψ
(
x, jk0q (f−1

n0
◦ fm)

)
, for all x ∈ Ω′ and m ≥ n0.

Since the right-hand side converges in C∞(Ω′,M) as m→ ∞, we conclude that the sequence (fm)
also converges in C∞(Ω′,M) to a map f [q0].

Recall that q0 ∈ Ω′. Hence, to show that q0 ∈ O, it remains to prove that Jacf [q0](q0) 6= 0. For
this, we again make use of Proposition 2.2 with x0 = q′0 := f [q0](q0), and Λ0 = jk1x0

id, assuming
that S satisfies a complete system of order k1 + 1 at x0. We denote again by Ω′, Ω′′ and Ψ the
data associated to this choice given by the proposition. Let q1 ∈ O be sufficiently close to q0 such
that jk1q′ id ∈ Ω′′ holds with q′ := f [q0](q1). If f [q1] denotes the limit of the sequence (fn) defined in
a neighborhood of q1, by Lemma 3.2, there exist n1 such that, for n,m ≥ n1, we have

jk1q′ (fn ◦ f
−1
m ) ∈ Ω′′, jk1q′ (fn1

◦ (f [q1])−1) ∈ Ω′′.

Note that f [q1](x) = f [q0](x) for all x in a neighborhood of q1. By Proposition 2.2, we have for
m ≥ n1,

fn1
(f−1
m (x)) = Ψ

(
x, jk1q′ (fn1

◦ f−1
m )

)
, for all x ∈ Ω′.

By the choice of q1 and q′, again the right-hand side converges in a neighborhood of q ′0 and hence
(f−1
m (x)) also converges in the same neighborhood of q ′0. Denote by g its limit. Since g(f [q0](x)) = x

for x in a neighborhood of q0, we conclude that Jacf [q0](q0) 6= 0. Hence q0 ∈ O proving that
O = M by connectedness of M . Thus the sequence (fn) converges in C∞(M,M) to a mapping f
with nowhere vanishing Jacobian.

By using Lemma 3.2 again, we see that, for n sufficiently large, the sequence (f−1
n ) converges in

a fixed neighborhood of p′ := f(p) in the C∞ topology. Since, for any l, the jets j lp′f−1
n converge in

Gl(M), we may apply the above argument to the sequence (f−1
n ) instead of (fn) to conclude that

(f−1
n ) converges to a map g : M →M in the C∞ topology. Then it follows that g ◦ f = f ◦ g = id

and therefore f ∈ Diff(M). Since G is assumed to be closed in Diff(M), we conclude that f ∈ G
completing the proof of the lemma. �

Proof of Proposition 3.1. By the assumption of the proposition, given a point p ∈ M , G satisfies
a complete system of order k+1 at p for some integer k (see Definition 2.1 with x0 = p). We shall
show that the map (3.4), with this value of k, satisfies the conclusion of Proposition 3.1.

We first show that the map (3.4) is injective. For this, let g1, g2 ∈ G with jkpg1 = jkpg2. By
Proposition 2.2, we conclude that g1 and g2 agree in a neighborhood of p in M . Then the set

V := {q ∈M : g1(x) = g2(x) for x in a neighborhood of q}

contains p and is open again by Proposition 2.2. By the connectedness of M , it suffices to show
that V is closed in M . For this, let q0 be in the closure of V . Then, by Proposition 2.2 with x0 = q0,
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there exists an integer k0 and, for Λ0 := jk0q0 g1, a map Ψ: Ω′ × Ω′′ → M , for which (2.2) holds.

Then, for y ∈ V , jk0y g1 = jk0y g2 and hence, for y ∈ V sufficiently close to q0, gi(x) = Ψ(x, jk0y gi)
holds for x ∈ Ω′ and i = 1, 2. In particular, we obtain g1(x) = g2(x) for x in a neighborhood of
q0. This proves that q0 ∈ V and hence the map (3.4) is injective. As an immediate consequence
of Lemma 3.3, we see that the image jkp (G) is closed in Gk

p(M). The map jkp in (3.4) is clearly
continuous. Since we have shown that it is injective, the rest of the proof of the proposition is a
consequence of Lemma 3.3. �

As a direct corollary of Lemma 3.3, we obtain the following.

Corollary 3.4. Under the assumptions of Theorem 2.3, let k0 be the minimum of the integers k
given by Definition 2.1 as the point x0 ∈M varies. Then the topologies induced on G by C∞(M,M)
and Ck0(M,M) coincide.

We complete the proof of Theorem 2.3 by applying the following theorem of Bochner-
Montgomery [BM46].

Theorem 3.5 (Bochner-Montgomery). Let G be a locally compact topological group acting con-
tinuously on a smooth manifold M by smooth diffeomorphisms. Suppose that the identity is the
only element of G which fixes every point of a nonempty open subset of M . Then G is a Lie group
and the action G×M →M is smooth.

Proof of Theorem 2.3. We apply Theorem 3.5 to our situation. Since, for every p ∈ M and every
integer k, the invertible jet space fiber Gk

p(M) is a manifold, it follows from Proposition 3.1
that G is locally compact. Moreover, since the map (3.4) is injective, the second assumption of
Theorem 3.5 also holds. The proof is completed by applying Theorem 3.5. �

4. Lie group structures for germs of diffeomorphisms

In this section we shall give proofs of the local results stated in Section 2.

Proof of Proposition 2.8. The proof of the fact that (2.3) implies (2.4) is analogous to the corre-
sponding part in the proof of Proposition 2.2. We shall prove that (2.4) implies (2.3). Since the
statements are local, we may assume that M = Rn and p = 0. As in the proof of Proposition 2.2,
we take local coordinates x = (x1, . . . , xn) on Rn inducing coordinates (x,Λ) = (x, (Λβ)0≤|β|≤k) on
the jet space Jk(Rn) ∼= Rn × RN , where N is the number of the multiindices β with 0 ≤ |β| ≤ k.
Let Ω′, Ω′′ and Ψ be as in Proposition 2.8. Then we have 0 ∈ Ω′ ⊂ Rn and Λ0 ∈ Ω′′ ⊂ RN . We

begin by changing Ψ to obtain Ψ̃ with the property

(4.1) ∂αx Ψ̃(0,Λ) = Λα, Λ ∈ Ω′′.

For this, we take

Ψ̃(x,Λ) := Ψ(x,Λ) +
∑

0≤|β|≤k

(Λβ − ∂βxΨ(0,Λ))
xβ

β!
.

Then (4.1) holds and (2.4) still holds with Ψ replaced by Ψ̃.
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Consider the map

(4.2) Ω′ × Ω′′ 3 (x,Λ) 7→ Θ(x,Λ) :=
(
x, (∂αx Ψ̃(x,Λ))0≤|α|≤k

)
∈ R

n × R
N .

By (4.1), Θ(0,Λ) ≡ (0,Λ). By the implicit function theorem, there exists a smooth (resp.
real-analytic) function χ(x,Λ) defined in a neighborhood of (0,Λ0) in R

n × R
N satisfying

Θ(x, χ(x,Λ)) ≡ Λ. Then

Φ(x,Λ) :=
(
x, (∂αy Ψ̃(y, χ(x,Λ))|y=x)0≤|α|≤k+1

)

satisfies the desired conclusion. �

Proof of Theorem 2.9. We want to show that the image of the continuous group homomorphism

(4.3) G 3 g 7→ jkpg ∈ Gk
p,p(M)

is closed. Since this image is a subgroup of Gk
p,p(M), it suffices to show that it is closed in a

neighborhood of the identity. For this, we apply Proposition 2.8 to S := G and Λ0 := jkp id.

We claim that the image of G is closed in Ω′′ ⊂ Gk
p(M). Indeed, given a sequence gn ∈ G with

jkpgn → λ ∈ Ω′′ as n→ ∞, the sequence g̃n(x) := Ψ(x, jkpgn) consists of representatives of gn defined
in Ω′, a uniform neighborhood of p. Clearly g̃n(x) converges to g̃(x) := Ψ(x, λ) in C∞(Ω′,M) (resp.
Cω(Ω′,M)). It follows that the germ gn converges in Diff(M, p) (resp. Diffω(M, p)) to g, the germ
of g̃ at p, and hence λ = jkpg. Since G is closed in Diff(M, p) (resp. Diffω(M, p)), it follows that
g ∈ G proving the claim. The same argument also shows that the homomorphism (4.3) is a
homeomorphism onto its image. Since a closed subgroup of a Lie group is a Lie subgroup, it
follows that G has a (necessarily unique) Lie group structure (see e.g. [V74]). Furthermore, the
conclusion of Proposition 2.8 also implies that the action of G is smooth (resp. real-analytic). The
proof of the theorem is complete. �

5. Finite jet determination for Lie group actions

The purpose of this section is to prove the following finite jet determination result which is
slightly more general than Theorem 2.10 and from which Theorem 2.4 will follow.

Proposition 5.1. Let M be a connected real-analytic manifold and p a point in M . Suppose that
G is a Lie group with finitely many connected components equipped with a continuous injective
homomorphism ι : G → Diffω(M, p). Then there exists a number k such that, for g1, g2 ∈ G,
jkp (ι(g1)) = jkp (ι(g2)) if and only if g1 = g2.

As a first step, we need some basic facts about jet groups. For every positive integer k, consider
the subgroup

(5.1) Lk := {f ∈ Diffω(M, p) : jkpf = jkp id}.

If (x1, . . . , xn) are local coordinates on M vanishing at p, then every ϕ ∈ Lk can be written as

ϕ : (x1, . . . , xn) 7→ (x1 + f1(x), . . . , xn + fn(x))
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where x = (x1, . . . , xn) and fi(x) = o(|x|k), x→ 0. As a consequence we obtain that Lk/Lk+1 is a
commutative group which can be identified with the additive group of all Rn-valued homogeneous
polynomials on R

n of degree k + 1. In particular Lk/Lk+1 is isomorphic to the additive group of
a finite-dimensional real vector space. Thus we have established:

Lemma 5.2. Let (M, p) be a germ of a real-analytic manifold and Lk be the subgroup given by
(5.1). Then Lk/Lk+1 is a torsion-free commutative group for all k ≥ 1.

We shall also need the following well-known fact from Lie group theory for which we give a
proof for the reader’s convenience:

Lemma 5.3. The fundamental group of a connected Lie group is commutative and finitely gen-
erated.

Proof. Let G be a connected Lie group and π : G̃ → G the universal covering group of G. The
kernel H of π is therefore a normal discrete subgroup of G̃ that is isomorphic to the fundamental

group of G. Hence ghg−1 ∈ H for all g ∈ G̃ and h ∈ H. Since G̃ is connected and H is discrete, it
follows that ghg−1 = h for all g and h as above proving the commutativity of H and hence of the
fundamental group of G.

To show that the fundamental group of G is finitely generated, consider a maximal compact
subgroup K of G. Then G is homeomorphic to K×Rl for some nonnegative integer l, in particular,
G and K have isomorphic fundamental groups. Since K is a compact manifold, its fundamental
group is necessarily finitely generated. This completes the proof of the lemma. �

Now we are ready to prove Proposition 5.1.

Proof of Proposition 5.1. For k ∈ N, let

(5.2) Hk := {g ∈ G : jkp (ι(g)) = jkp id}.

Since Hk is the kernel of the homomorphism G 3 g 7→ jkp (ι(g)) ∈ Gk
p(M), (Hk) is a descending

sequence of normal closed Lie subgroups of G. Moreover, since ι is injective and ι(g) is real-analytic
for any g ∈ G, it follows that

(5.3)
⋂

k

Hk = {e},

where e is the unit in G. In fact, we shall show that there exists a number k ∈ N such that
Hk = {e}.

Note that dimHk is a decreasing sequence of nonnegative integers and set d0 := limk→∞ dimHk.
Then there is a number n0 ∈ N such that dimHk = d0 for all k ≥ n0. Since Hk ⊃ Hk+1 for all k,
this implies that the connected component H0

k of e in Hk is the same for all k ≥ n0. Combined
with (5.3) this implies that H0

k = {e} and hence that Hk is discrete for k ≥ n0.
From now on, consider only k with k ≥ n0. Denote by G0 the connected component of e in G

and set Ik := Hk ∩ G0. Since Hk is discrete and normal in G, we conclude that Ik is a discrete
normal subgroup of the connected Lie group G0. Thus G0/Ik is a connected Lie group and the
canonical map G0 → G0/Ik is a covering map. By lifting each loop through the unit in G0/Ik
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to a (unique) path in G0 starting from e, we obtain a surjective group homomorphism from
the fundamental group π1(G

0/Ik) to Ik. Since, by Lemma 5.3, π1(G
0/Ik) is necessarily a finitely

generated commutative group, it follows that Ik is also finitely generated and commutative.
Recall that the (free) rank of a finitely generated commutative group A, regarded as a Z-module,

is the maximal number of Z-linearly independent elements in A. Recall also that, by the main
structure theorem for finitely generated commutative groups (see e.g. [DF91]), A is isomorphic to
a direct sum of cyclic groups Zr ⊕ Za1 ⊕ · · · ⊕ Zal

, where Za is the cyclic group of order a. In this
case rank(A) = r. Since (Ik) is a decreasing sequence of finitely generated commutative groups,
there exists a natural number n1 ≥ n0 such that rank(Ik) = rank(Ik+1) for all k ≥ n1. Then it
follows from the definition of the rank that Ik/Ik+1 consists of elements of finite order. From now
on, consider only k with k ≥ n1. By construction, there exists an embedding Ik/Ik+1 ↪→ Lk/Lk+1.
Since Lk/Lk+1 does not contain any element of finite order, it follows that Ik/Ik+1 = 0. Combined
with (5.3) this implies that Ik = {e}.

Recall that Ik = G0∩Hk. Thus Ik = {e} implies that the natural projection G→ G/G0 restricts
to an injective group homomorphism from Hk to G/G0. Since G has finitely many components
by assumption, it follows that G/G0 is a finite group and hence Hk is also finite for k ≥ n1. Thus
the (Hk) form a descending sequence of finite groups. In view of (5.3), it follows that Hk = {e}
for sufficiently large k ∈ N.

To complete the proof of Proposition 5.1, choose k with Hk = {e} and suppose that, for
g1, g2 ∈ G, jkp (ι(g1)) = jkp (ι(g2)) holds. Then for g := g−1

1 ◦ g2, we have jkp (ι(g)) = jkp id. Hence
g ∈ Hk = {e} which implies g1 = g2 as desired. �

Proof of Theorem 2.4. We apply Proposition 5.1 to the group Gp and the obvious homomorphism
ι : Gp → Diffω(M, p). Let k be given by the conclusion of the proposition. Then, if for g1, g2 ∈ G, we
have jkpg1 = jkpg2, then g := g−1

1 ◦g2 ∈ Gp satisfies jkpg = jkp id. By the conclusion of Proposition 5.1,
we conclude that g = id proving g1 = g2 as desired. �

6. Applications to CR automorphism groups of CR manifolds

In this section we shall apply the results of Section 2 to the case of CR automorphism groups of
CR manifolds. Recall (see e.g. [Bo91, BER99b] for more details) that an (abstract) CR manifold
M is a smooth manifold equipped with a complex vector subbundle V of the complexified tangent
bundle CTM of M such that V ∩ V = 0 and [V,V] ⊂ V. The subbundle V ⊂ CTM is then called
the CR bundle of M . The (complex) fiber dimension of V is called the CR dimension of M and
the (fiber) codimension of V ⊕ V in CTM the CR codimension of M . In case both M and V are
real-analytic, M is called a real-analytic CR manifold.

An important class of CR manifolds is that of embedded ones. If X is a complex manifold and
M ⊂ X a smooth real submanifold such that

V := (T 0,1X|M) ∩ CTM

is a subbundle of CTM , where T 0,1X is the bundle of (0, 1) tangent vectors on X, then M equipped
with subbundle V defined above is a CR manifold. It is known (see [AF79]) that a real-analytic
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CR manifold can be always considered as embedded in a complex manifold X with

(6.1) dimC X = CR dimM + CR codimM.

In case M is embedded in a complex manifold X and (6.1) holds, then M is called a generic
submanifold of X. (A smooth abstract CR manifold may not be even locally embeddable in any
CN , see e.g. [Bo91]).

If M and M ′ are two smooth CR manifolds with CR bundles V and V ′ respectively, a CR map
f : M → M ′ is a smooth map satisfying f∗V ⊂ V ′, where f∗ : CTM → CTM ′ is the induced
pushforward map. A CR automorphism of M is a CR map from M to itself which is also a
diffeomorphism. Observe that in this case the inverse map is also CR. We denote by AutCR(M) ⊂
Diff(M) the subgroup of all smooth CR automorphisms of M equipped with the induced topology.
When M is a real-analytic CR manifold, we also denote by AutωCR(M) ⊂ Diffω(M) the subgroup
of all real-analytic CR automorphisms of M .

In general, AutCR(M) (or AutωCR(M) in case M is real-analytic) may not be a (finite-dimensional)
Lie group. Indeed, for the embedded CR manifold M := Rn ⊂ Cn (and hence V = 0) we have
AutCR(M) = Diff(M) and AutωCR(M) = Diffω(M). On the other hand, it is known that, if M is a
Levi-nondegenerate smooth hypersurface in CN , N > 1, then AutCR(M) (and also AutωCR(M)) is
a Lie group (see [C32, T67, CM74, BS77]).

It is clear from the above that some nondegeneracy conditions have to be imposed on a CR
manifold in order for AutCR(M) and AutωCR(M) to have Lie group structures (compatible with
their topologies). One of the conditions we impose here, generalizing Levi-nondegeneracy, is that
of finite nondegeneracy, whose definition we recall. Let M ⊂ C

N be a smooth generic submanifold
and p ∈ M . If d is the CR codimension of M , then M is a real submanifold of codimension d in
CN . Let ρ = (ρ1, . . . , ρd) be a smooth defining function for M in a neighborhood of p with linearly
independent complex differentials ∂ρ1, . . . , ∂ρd. Then M is said to be finitely nondegenerate if

(6.2) spanC

{
L1 . . . Lkρ

j
Z(p) : k ≥ 0, 1 ≤ j ≤ d

}
= C

N ,

where the span is taken over all collections of smooth (0, 1) vector fields L1, . . . , Lk on M defined in
a neighborhood of p. Here each ρjZ is regarded as the vector in CN whose components are ∂ρj/∂Zr,
1 ≤ r ≤ N , where Z = (Z1, . . . , ZN) are coordinates in CN . We further call M l-nondegenerate
at p or say that M is finitely nondegenerate of order l if l is the smallest integer for which (6.2)
still holds under the additional restriction k ≤ l. In particular, a hypersurface M ⊂ CN is Levi-
nondegenerate at p if and only if it is 1-nondegenerate at p. The reader can check that the above
definitions are independent of the choice of local holomorphic coordinates Z in CN and of the
defining function ρ. For the notion of finite nondegeneracy for abstract CR manifolds we refer to
[BER99b]. Another way of defining this notion for an abstract CR manifold M is to reduce to the
embedded case by means of “approximate embeddings” in C

N for N := CR dimM +CR codim M
(see [KZ02] for this approach).

We recall also the notion of finite type in the sense of Kohn and Bloom-Graham. A CR manifold
M is of finite type at a point p if the Lie algebra generated by the (1, 0) and the (0, 1) smooth
vector fields on M spans the complex tangent space of M at p. For hypersurfaces M ⊂ CN , N > 1,
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(and, more generally, for abstract CR manifolds of CR codimension one and CR dimension at least
one), it can be seen that finite nondegeneracy at p implies finite type at p.

For CR manifolds with the above nondegeneracy conditions the following result is known.

Theorem 6.1. Let M be a smooth (resp. real-analytic) CR manifold of CR codimension d, which
is l-nondegenerate and of finite type at a point p ∈ M . Then the subgroup AutCR(M) ⊂ Diff(M)
(resp. AutωCR(M) ⊂ Diffω(M)) satisfies a smooth (resp. real-analytic) complete system at p of order
k + 1 with k := 2(d+ 1)l.

Theorem 6.1 as stated above was proved by S.-Y. Kim and the fourth author [KZ02]. The
embedded hypersurface case was previously established by Ebenfelt [E01]. Previous results on
complete systems for CR mappings between real-analytic Levi-nondegenerate hypersurfaces were
obtained in [H97]. For M real-analytic, Theorem 6.1 is essentially contained in the work of the
first two authors jointly with Ebenfelt [BER99a] (see also [BER97, Z97]).

6.1. Global CR automorphisms. Using Theorem 6.1 we obtain the following application of
Theorem 2.3 to the global CR automorphism group of a CR manifold.

Theorem 6.2. Let M be a smooth (resp. real-analytic) CR manifold, which is finitely nondegener-
ate and of finite type at every point. Assume that M has finitely many connected components. Then
AutCR(M) (resp. AutωCR(M)), equipped with the induced topology of Diff(M) (resp. Diffω(M)), has
a (unique) structure of a Lie group acting smoothly (resp. real-analytically) on M .

In the case where M is a compact real-analytic CR manifold satisfying the assumptions of
Theorem 6.2, this result was proved in [Z97]. We note that in Theorem 6.2 no upper bound, as
p varies in M , is imposed on either the order of finite nondegeneracy at p, nor on the minimal
length of commutators of (1, 0) and (0, 1) vector fields needed in the definition of finite type at p.
In fact, both of these numbers can be unbounded.

Proof of Theorem 6.2. We give the proof only for AutCR(M) since the case of AutωCR(M) is com-
pletely analogous. If M is connected, Theorem 6.2 is an immediate consequence of Theorems 6.1
and 2.3. When M has finitely many connected components, M1, . . . ,Ml, it follows from the above
that each AutCR(Mi), i = 1, . . . , l, is a Lie group. For each g ∈ AutCR(M), there is a permutation
σg of {1, . . . , l} such that g(Mi) = Mσg(i), i = 1, . . . , l. Then for any permutation σ of {1, . . . , l},
the set {g ∈ AutCR(M) : σg = σ} is a coset of the Lie group AutCR(M1)× · · · ×AutCR(Ml). Hence
AutCR(M) is a Lie group as a finite (disjoint) union of cosets of a Lie group. �

The assumption of finiteness of the number of components in Theorem 6.2 cannot be removed.
Indeed, if M has infinitely many components Mα, α ∈ A, such that each AutCR(Mα) is a Lie
group of positive dimension, then group AutCR(M) contains as a subgroup the infinite product∏

α∈A AutCR(Mα) and hence is not a (finite-dimensional) Lie group.
If M is real-analytic and satisfies the assumptions of Theorem 6.2 then it follows from results

of [BJT85], using also [Tu88], that the groups AutCR(M) and AutωCR(M) coincide. However, in
general, for a real-analytic CR manifold, these groups may be different even when both groups
have Lie group structures compatible with their topologies, as is shown by the following example.
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Example 6.3. Let Q ⊂ C2 be the quadric given by Imw = |z|2 and

Q̂ := {(z, w) ∈ Q : z /∈ S}, S := [−1, 1] ∪ [0, i] ⊂ C.

All (smooth) CR automorphisms between open subsets of Q are known (see e.g. [CM74]) to be
restrictions to Q of birational maps of C2 of the form Φ ◦ Ψ with

(6.3) Φ(z, w) = (z + z0, w + w0 + 2iRe (zz0)), (z0, w0) ∈ Q,

(6.4) Ψ(z, w) =
(λ(z + aw), |λ|2w)

1 − 2iza− (r + i|a|2)w
, λ ∈ C \ {0}, a ∈ C, r ∈ R.

(Observe that every Ψ of the form (6.4) is defined on all of Q except at most one point.) Hence we

can identify the CR automorphisms of Q̂ with their birational extensions to Q. Then AutCR(Q̂) =

{f ∈ AutCR(Q) : f(Ŝ) = Ŝ} with Ŝ := {(z, w) ∈ Q : z ∈ S}, and it is then straightforward to
check that

(6.5) AutCR(Q̂) = AutωCR(Q̂) = {ϕu : u ∈ R}, where ϕu(z, w) := (z, w + u).

Let χ ∈ C∞(R) with χ(t) = 0 for t ≤ 3/2 and χ(t) > 0 for t > 3/2. Define a CR submanifold
M ⊂ C3 by

M :=
(
(1, 2) × Q̂

)
\ F,

where F is the closure in C3 of the subset
{(
t, t, nχ(t) + it2

)
: t ∈ (1, 2), n ∈ Z

}
. Given any f =

(f1, f2) ∈ AutCR(M), it follows from the definition that f1 : M → R is a CR map and hence

(since Q̂ is of finite type) f1 = f1(t) for t ∈ (1, 2), i.e. f1 depends only on the first argument.

For t ∈ (1, 2), the map (z, w) 7→ f2(t, z, w) extends to a map in AutCR(Q̂) and hence, by (6.5),
f2(t, z, w) = (z, w + u(t)) for some smooth function u(t). Thus f = (f1, t2) extends to a CR

automorphism (t, z, w) 7→ (f1(t), z, w + u(t)) of (1, 2) × Q̂ that preserves F . From here it is
straightforward to check that

AutCR(M) = {Θn : n ∈ Z}, Θn(t, z, w) := (t, z, w + nχ(t)).

Hence AutωCR(M) consists only of the identity map. Both AutCR(M) and AutωCR(M) are (zero-
dimensional) Lie groups. Note that M is finitely nondegenerate at every point but not of finite
type at any point.

Example 6.3 furthermore shows that AutCR(M) may have a (compatible) Lie group structure
without satisfying a complete system. Indeed, at any point of the form p0 = (3/2, z0, w0) ∈ M ,
one has jkp0Θn = jkp0 id for all k and n and hence even finite jet determination does not hold for
AutCR(M). On the other hand, AutωCR(M) = {id} clearly satisfies an (analytic) complete system
in the sense of Definition 2.1.

It may also happen for a real-analytic CR manifold M that AutωCR(M) is a Lie group while
AutCR(M) is not, as is shown by the following modification of Example 6.3.
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Example 6.4. We take

M :=
(
(1, 2) × Q̂

)
\ F̂ ,

where F̂ is the closure in C
3 of the subset

{(
t, t, nχ(t) + it2

)
: 3/2 ≤ t < 2, n ∈ Z

}
, where Q̂ and

χ(t) are as in Example 6.3. Then the same arguments as in Example 6.3 show that AutωCR(M) =
{id}. However, for any function α ∈ C∞(R) with support in (1, 3/2), the mapping (t, z, w) 7→
(t, z, w + α(t)) is in AutCR(M). Hence AutCR(M) is not a (finite-dimensional) Lie group.

An immediate application of Theorem 2.4 gives the following.

Corollary 6.5. Let M be a connected real-analytic CR manifold with p ∈ M , and assume that
the subgroup of AutωCR(M) fixing p has finitely many connected components. Then there exists an
integer k such that for any two elements g1, g2 ∈ AutωCR(M),

g1 = g2 if and only if jkpg1 = jkpg2.

The authors do not know if, under the assumptions of Corollary 6.5, the stronger conclusion
that AutωCR(M) satisfies a complete system at p also holds.

6.2. Germs of local CR automorphisms. If M is a smooth (resp. real-analytic ) CR manifold
and p ∈M , we denote by AutCR(M, p) ⊂ Diff(M, p) (resp. AutωCR(M, p) ⊂ Diffω(M, p)) the group
of all germs at p of local smooth (rep. real-analytic) CR automorphisms of M fixing p. We consider
on AutωCR(M, p) the topology induced by Diffω(M, p). Since the general results for groups of germs
of local diffeomorphisms given in Section 2.2 are only for the real-analytic case, we shall first
discuss this case and survey recent results.

Theorem 6.6. Let M be a real-analytic CR manifold of CR codimension d which is `-
nondegenerate and of finite type at a point p ∈M . Then with k := (d+ 1)` the mapping

(6.6) AutωCR(M, p) 3 f 7→ jkpf ∈ Gk
p,p(M)

is an injective homeomorphic group homomorphism onto a totally real real-algebraic Lie subgroup
of Gk

p,p(M). Hence AutωCR(M, p) has the structure of a real-algebraic Lie group.

Theorem 6.6, as stated above, was proved by the first two authors jointly with Ebenfelt in
[BER99a]. An earlier result by the fourth author in [Z97] proved that the mapping (6.6) with k =
2(d+1)` is an injective homeomorphic group homomorphism onto a closed Lie subgroup ofGk

p,p(M)
(The real hypersurface case was treated in [BER97]). The main tool for proving Theorem 6.6 is a
local jet parametrization in the sense of Proposition 2.8.

For a real-analytic hypersurface M ⊂ C2, it has recently been proved in [ELZ03] that
AutωCR(M, p) has a Lie group structure under the single assumption that M is of finite type
at p (that is, without the condition that M is finitely nondegenerate at p). More partial results
are known in the direction of Theorem 6.6 stating only the injectivity of the map (6.6) for suitable
k [BER00, BMR02, ELZ03, Kw01].

In contrast to the real-analytic case, the statement analogous to that of Theorem 6.6 does not
hold for general smooth CR manifolds even under the strongest possible conditions (e.g. if M is
a strongly pseudoconvex hypersurface in C2). In fact, it is shown in [KZ03] that there exists a
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smooth strongly pseudoconvex hypersurface M ⊂ C2 and a point p ∈ M such that the image of
the map

(6.7) AutCR(M, p) 3 f 7→ jkpf ∈ Gk
p,p(M)

is not closed for any integer k (observe that the map (6.7) is known to be injective for k ≥ 2 (see
[C32, CM74])). This is also in contrast with the global automorphism group AutCR(M), where the
mapping

(6.8) AutCR(M) 3 f 7→ jkpf ∈ Gk
p(M)

has always closed image for suitable k under the assumptions of Theorem 6.2 on M (see Proposi-
tion 3.1 and Theorem 6.1). Although, as mentioned in Subsection 2.2, Diff(M, p) is not Hausdorff,
it is easy to see that its subset AutCR(M, p) is Hausdorff in the induced topology whenever the
(continuous) map (6.7) is injective for some k. If, moreover, AutCR(M, p) satisfies a smooth local
complete system of order k + 1 in the sense of Definition 2.7, then it follows from Proposition 2.8
that the induced topology from Diff(M, p) coincides with the one induced by the injection (6.7).
Hence the mentioned examples from [KZ03] show that AutCR(M, p) may not have a Lie group
structure compatible with that topology. It should be noted that if M is a smooth CR manifold
which is finitely nondegenerate and of finite type at a point p, then AutCR(M, p) satisfies a local
complete system; this is proved in [E01, KZ02].

We would like to conclude with the following open question. Let M be a connected real-analytic
CR manifold such that for every p ∈M , AutωCR(M, p) has a Lie group structure compatible with its
topology. Does this imply that AutωCR(M) has also a Lie group structure (compatible with its own
topology)? Note that the converse implication does not hold. Indeed, for the CR manifold M given
in Example 6.4, AutωCR(M) = {id} whereas, for every p ∈ M , AutωCR(M, p) is infinite-dimensional
since M is locally a product of the quadric Q and R.
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