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Abstract Our goal is to establish what seems to be the first rigidity result for
CR embeddings between Shilov boundaries of bounded symmetric domains
of higher rank. The result states that any such CR embedding is the standard
linear embedding up to CR automorphisms. Our basic assumption extends
precisely the well-known optimal bound for the rank one case. There are no
other restrictions on the ranks, in particular, the difficult case when the target
rank is larger than the source rank is also allowed.

Mathematics Subject Classification (2000) 32V40 · 32V30 · 32V20 ·
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1 Introduction

Rigidity phenomena for holomorphic isometries into complex space forms
go back to Bochner [6] and Calabi [7] and lead to far going and deeper un-
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derstanding of metric rigidity between general bounded symmetric domains
in the work of Mok, Mok-Ng and Ng among others. The reader is referred
to the survey by Mok [29] for more details, see also the very recent work by
Yuan-Zhang [40]. Other important rigidity phenomena for bounded symmet-
ric domains, such as the strong rigidity of complex structures of their com-
pact quotients have been discovered by Siu [31, 32]. See also further work
[8, 23, 34]

On the other hand, the study of rigidity of holomorphic maps originated
in the work of Poincaré [30] and later Alexander [1] for maps sending one
open piece of the sphere into another. It was Webster [38] who first ob-
tained rigidity for holomorphic maps between pieces of spheres of differ-
ent dimension, proving that any such map between spheres in C

n and C
n+1

is totally geodesic. Further results in this direction are due to Faran [15],
Cima-Suffridge [10, 11], Forstneric [16, 17] and Huang [18] who obtained
the best known regularity assumption independent of the dimension differ-
ence n′ − n, for CR maps between pieces of spheres in C

n+1 and C
n′+1 un-

der the assumption n′ < 2n. See alsothe recent work of S.S.-T. Yau [39].
Beyond this bound, the rigidity is known to fail as illustrated by the so-
called Whitney map (see e.g. Example 1.1 in [13]). (CR maps are closely
related to holomorphic ones, see e.g. [3]). We mention the work by Huang-
Ji [20], Huang [19] and Huang-Ji-Xu [21, 22] dealing with this more diffi-
cult case, where rigidity has to be replaced by the classification of the maps.
On the other note, further rigidity phenomena for CR maps between real
hypersurfaces and hyperquadrics have been discovered by Ebenfelt-Huang
and the second author [13, 14], Baouendi-Huang [2], Baouendi-Ebenfelt-
Huang [4, 5] and Ebenfelt-Shroff [12].

However, comparing with metric rigidity mentioned above, holomorphic
rigidity for maps between bounded symmetric domains D and D′ of higher
rank remains much less understood. If the rank r ′ of D′ does not exceed the
rank r of D and both ranks r, r ′ ≥ 2, the rigidity of proper holomorphic maps
f : D → D′ was conjectured by Mok [27] and proved by Tsai [35], showing
that f is necessarily totally geodesic (with respect to the Bergmann metric).

The remaining case r < r ′ seems to be very hard and only little is known.
Tu [36, 37] established holomorphic rigidity respectively in the equidimen-
sional case (when he proves that the map is biholomorphic and hence r = r ′)
and for maps between Cartan type I bounded symmetric domain Dp,p−1 and
Dp,p (see below). Finally, Mok [28] proved the nonexistence of proper holo-
morphic maps between certain pairs of bounded symmetric domains with ar-
bitrary r ′ − r .

The goal of this paper is to take on the rigidity problem for locally defined
CR embeddings between Shilov boundaries of general Cartan type I bounded
symmetric domains Dp,q of higher rank. This includes the interesting case
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r < r ′. To the best authors’ knowledge all known results on local CR rigid-
ity deal with maps between real hypersurfaces and rely heavily on Tanaka-
Chern-Moser approach [9, 33] and many of them also on Tanaka-Webster
connection, which is unavailable for Shilov boundaries of higher rank. In this
paper we follow a new approach going back to the general Cartan’s moving
frame method. To compensate for the lack of the power of Tanaka-Chern-
Moser normalization, we introduce a sequence of several subsequent adjust-
ments of moving frames reaching further and further normalization condi-
tions. We prove:

Theorem 1.1 Let f be a smooth CR embedding between open pieces of
Shilov boundaries of two bounded symmetric domains Dp,q , Dp′,q ′ of Cartan
type I with q < p, q ′ < p′. Assume that the rank q > 1 and

p′ − q ′ < 2(p − q). (1.1)

Then after composing with suitable automorphisms of Dp,q and Dp′,q ′ , f is
given by the block matrix

z �→
⎛
⎝

z 0
0 I

0 0

⎞
⎠ .

Note that the assumptions q < p and q ′ < p′ exclude precisely the cases
of square matrices, where one of the Shilov boundaries is totally real and
consequently CR maps are trivial. Furthermore, our basic assumption (1.1)
corresponds precisely to the optimal bound n′ < 2n mentioned before in the
rank 1 case (q = q ′ = 1) of maps between spheres, where n = p − 1 and
n′ = p′ − 1 are the CR dimensions of the spheres.

2 Preliminaries and adapted frames

Throughout this paper we adopt the Einstein summation convention unless
mentioned otherwise. However, if two equal indices appear at the same letter,
e.g. Φ a

a , no summation is assumed. We shall also follow the convention that
small Greek indices α,β, γ, δ run over {1, . . . , q}, small Latin indices i, j, k, l

over {1, . . . , n}, small Latin indices a, b, c, d over {1, . . . , q ′} and large Latin
indices I, J,K,L over {1, . . . , n′}.

Recall that Dp,q has the standard realization in the space C
p×q of p × q

matrices, given by

Dp,q := {
z ∈ C

p×q : Iq − z∗z is positive definite
}
,
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where Iq is the identity q × q matrix and z∗ = z̄t . The Shilov boundary of
Dp,q is given by

Sp,q = {
z ∈ C

p×q : Iq − z∗z = 0
}
.

In particular, Sp,q is a symmetric CR manifold of CR dimension (p − q) × q

in the terminology of [24]. For q = 1, Sp,1 is the unit sphere in C
p . We shall

always assume p > q so that Sp,q has positive CR dimension, i.e. not totally
real.

Example 2.1 The following generalization of the well-known Whitney map

⎛
⎜⎝

z11 · · · z1q

...
. . .

...

zp1 · · · zpq

⎞
⎟⎠ �→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z11 · · · z1q ′ 0 · · · 0
...

. . .
...

...
. . .

...

zp−1,1 · · · zp−1,q ′ 0 · · · 0
z11zp1 · · · z11zpq ′ 0 · · · 0

...
. . .

...
...

. . .
...

zp1zp1 · · · zp1zpq ′ 0 · · · 0
0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ C
(p+m)×(q ′+m)

(2.1)

restricts to a CR map between the Shilov boundaries, where 1 ≤ q ′ ≤ q and
m is arbitrary. This map is not injective in Dp,q and hence is not linear af-
ter composing with any automorphisms of Dp,q and D′

p′,q ′ . For q = q ′ = 1,
m = 0, this is the classical Whitney proper map between unit balls in C

p and
C

2p−1 respectively, which corresponds to the equality in (1.1) showing that
the latter is an optimal bound.

Example 2.2 The following examples show that there are lots of CR maps
between Shilov boundaries for any choices of ranks q and q ′. Fix a collec-
tion of proper maps ϕ1, . . . , ϕq ′ from the unit ball in C

p into unit balls in
C

m1, . . . ,C
mq′ respectively for any choice of integers m1, . . . ,mq ′ . For any

q , and any choice of integers j1, . . . , jq ′ ∈ {1, . . . , q}, define

Φ : C
p×q → C

(m1+···+mq′ )×q ′
,

such that Φ(Z) is the block-diagonal matrix with entries ϕ1(zj1), . . . , ϕn(zjq′ )
on the diagonal. Then Φ restricts to a CR map between Shilov boundaries of
the corresponding bounded symmetric domains.
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Let Aut (Sp,q) be the Lie group of all CR automorphisms of Sp,q . By [24,
Theorem 8.5], every ϕ ∈ Aut (Sp,q) extends to a biholomorphic automorphism
of the bounded symmetric domain Dp,q . Consider the standard linear inclu-
sion

z �→
(

Iq

z

)
, z ∈ Sp,q .

Then we may regard Sp,q as a real submanifold in the Grassmanian Gr(q,p+
q) of all q-planes in C

p+q and Aut (Sp,q) = Aut (Dp,q) becomes a subgroup
of the automorphism group of Gr(q,p+q). In this section we will construct a
frame bundle over Sp,q associated with the CR structure of Sp,q using Grass-
mannian frames of Gr(q,p + q).

As before, consider the partial CR dimension n = p − q . The actual CR
dimension of Sp,q is (p − q)q = nq and q = r is the rank of the bounded
symmetric domain Dp,q .

For column vectors u = (u1, . . . , up+q)
t and v = (v1, . . . , vp+q)

t in C
p+q ,

define the Hermitian inner product by

〈u, v〉 := −(u1v̄1 + · · · + uqv̄q) + (uq+1v̄q+1 + · · · + up+q v̄p+q).

A Grassmannian frame adapted to Sp,q , or simply Sp,q -frame is a frame
{Z1, . . . ,Zp+q} of C

p+q with det(Z1, . . . ,Zp+q) = 1 such that

〈Zα,Zq+n+β〉 = 〈Zq+n+β,Zα〉 = δαβ, 〈Zq+j ,Zq+k〉 = δjk (2.2)

and

〈ZΛ,ZΓ 〉 = 0 otherwise, (2.3)

where the capital Greek indices Λ,Γ,Ω etc. run from 1 to p + q . We also
use the notation

Z := (Z1, . . . ,Zq), X = (X1, . . . ,Xn) := (Zq+1, . . . ,Zq+n),

Y = (Y1, . . . , Yq) := (Zq+n+1 . . . ,Zq+p),

so that (2.2) can be rewritten as

〈Zα,Yβ〉 = 〈Yβ,Zα〉 = δαβ, 〈Xj,Xk〉 = δjk, (2.4)

i.e. the scalar product 〈·, ·〉 in basis (Zα,Xj ,Yβ) is given by the matrix

⎛
⎝

0 0 Iq

0 In 0
Iq 0 0

⎞
⎠ .
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Let Bp,q be the set of all Sp,q -frames. Then Bp,q can be identified with
SU(p,q) by the left action. The Maurer-Cartan form π = (π Γ

Λ ) on Bp,q is
given by the equation

dZΛ = π Γ
Λ ZΓ , (2.5)

where π satisfies the trace-free condition
∑
Λ

π Λ
Λ = 0

and the structure equation

dπ Γ
Λ = π Ω

Λ ∧ π Γ
Ω . (2.6)

More explicitly, using the block matrix representation with respect to the basis
(Z,X,Y ), we can write

π =

⎛
⎜⎜⎝

π
β

α π
q+j

α π
q+n+β

α

π
β

q+k π
q+j

q+k π
q+n+β

q+k

π
β

q+n+α π
q+j

q+n+α π
q+n+β

q+n+α

⎞
⎟⎟⎠ =:

⎛
⎜⎝

ψ
β

α θ
j

α ϕ
β

α

σ
β

k ω
j

k θ
β

k

ξ
β

α σ
j

α ψ̂
β

α

⎞
⎟⎠ , (2.7)

which satisfies the symmetry relations
⎛
⎜⎝

ψ
β

α θ
j

α ϕ
β

α

σ
β

k ω
j

k θ
β

k

ξ
β

α σ
j

α ψ̂
β

α

⎞
⎟⎠ = −

⎛
⎜⎜⎝

ψ̂ ᾱ

β̄
θ ᾱ

j̄
ϕ ᾱ

β̄

σ k̄

β̄
ω k̄

j̄
θ k̄

β̄

ξ ᾱ

β̄
σ ᾱ

j̄
ψ ᾱ

β̄

⎞
⎟⎟⎠ (2.8)

that follow directly by differentiating (2.2).
The structure equations (2.6) can be rewritten as

dϕ β
α = ψ γ

α ∧ ϕ β
γ + θ l

α ∧ θ
β

l + ϕ γ
α ∧ ψ̂ β

γ (2.9)

dθ j
α = ψ γ

α ∧ θ j
γ + θ l

α ∧ ω
j

l + ϕ γ
α ∧ σ j

γ (2.10)

dψ β
α = ψ γ

α ∧ ψ β
γ + θ l

α ∧ σ
β

l + ϕ γ
α ∧ ξ β

γ (2.11)

dω
j

k = σ
γ

k ∧ θ j
γ + ω l

k ∧ ω
j

l + θ
γ

k ∧ σ j
γ (2.12)

dσ
β

k = σ
γ

k ∧ ψ β
γ + ω l

k ∧ σ
β

l + θ
γ

k ∧ ξ β
γ (2.13)

dξ β
α = ξ γ

α ∧ ψ β
γ + σ l

α ∧ σ
β

l + ψ̂ γ
α ∧ ξ β

γ , (2.14)

in particular,

dϕ β
α = θ j

α ∧ θ
β

j mod ϕ,

where ϕ is the span of ϕ
β

α for all α,β .
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By abuse of notation, we also denote by Z the q-dimensional sub-
space of C

p+q spanned by Z1, . . . ,Zq . Hence Z represents a point in
Sp,q and vice versa, any point in Sp,q is represented by Z correspond-
ing to an adapted frame (Z,X,Y ). Then Bp,q can be regarded as a bun-
dle over Sp,q via the projection map (Z,X,Y ) → Z. By another abuse
of notation, we shall also use the same letters for the components of π

and their pullbacks to Sp,q via a fixed section. Note that fixing a section
means precisely choosing an adapted frame (Z,X,Y ) at every point x of
(an open subset of) Sp,q such that Z represents x as a point in the Grassma-
nian.

The defining equations of Sp,q can be written as

Sp,q = {[V ] ∈ Gr(q,p + q) : 〈·, ·〉|V = 0
}

and hence their differentiation yields

〈dZΛ,ZΓ 〉 + 〈ZΛ,dZΓ 〉 = 0. (2.15)

By substituting dZΛ = π Γ
Λ ZΓ into (1,0) component of (2.15) we obtain, in

particular,

ϕ γ
α 〈Yγ ,Zβ〉 = ϕ β

α = 0,

when restricted to the (1,0) tangent space. Comparing the dimensions, we
conclude that the kernel of {ϕ β

α ,α,β = 1, . . . , q} forms the CR bundle of
Sp,q , i.e.,

ker(ϕ|Z) = T
1,0
Z Sp,q ⊕ T

0,1
Z Sp,q .

In other words, ϕ = (ϕ
β

α ) span the space of contact forms on Sp,q . Since

dZα = ψ β
α Zβ + ϕ β

α Yβ + θ j
α Xj

and ϕ = (ϕ
β

α ) is a contact form at Z = (Z1, . . . ,Zq), we conclude that ϕ
β

α

and θ
j

α form together a basis in the space of all (1,0) forms.
For a change of frame given by

⎛
⎝

Z̃

X̃

Ỹ

⎞
⎠ := U

⎛
⎝

Z

X

Y

⎞
⎠ ,

π changes via

π̃ = dU · U−1 + U · π · U−1.

There are several types of frame changes.
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Definition 2.3 We call a change of frame

(i) change of position if

Z̃α = W β
α Zβ, Ỹα = V β

α Yβ, X̃j = Xj,

where W = (W
β

α ) and V = (V
β

α ) are q × q matrices satisfying V ∗W =
Iq ;

(ii) change of real vectors if

Z̃α = Zα, X̃j = Xj, Ỹα = Yα + H β
α Zβ,

or ⎛
⎜⎝

Z̃α

X̃j

Ỹα

⎞
⎟⎠ =

⎛
⎝

Iq 0 0
0 In 0

H
β

α 0 Iq

⎞
⎠

⎛
⎝

Zβ

Xk

Yβ

⎞
⎠ , (2.16)

where H = (H
β

α ) is a hermitian matrix;
(iii) dilation if

Z̃α = λ−1
α Zα, Ỹα = λαYα, X̃j = Xj,

where λα > 0;
(iv) rotation if

Z̃α = Zα, Ỹα = Yα, X̃j = U k
j Xk,

where (U k
j ) is a unitary matrix.

Consider a change of position as in Definition 2.3. Then ϕ and θ change to

ϕ̃ β
α = W γ

α ϕ δ
γ W ∗ β

δ , W ∗ β
δ = W δ

β , θ̃ j
α = W β

α θ
j

β .

We shall also make use of the change of frame given by

Z̃α = Zα, X̃j = Xj + C
β

j Zβ, Ỹα = Yα + A β
α Zβ + B j

α Xj ,

or ⎛
⎜⎝

Z̃α

X̃j

Ỹα

⎞
⎟⎠ =

⎛
⎜⎝

Iq 0 0
C

β
j In 0

A
β
α B

j
α Iq

⎞
⎟⎠

⎛
⎝

Zβ

Xk

Yβ

⎞
⎠ , (2.17)

such that

C α
j + B α

j = 0
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and
(
A β

α + A α
β

) + B j
α B

β
j = 0,

where

B α
j := B

j
α .

Then the new frame (Z̃, Ỹ , X̃) is an Sp,q -frame. In fact,

0 = 〈Ỹα, Ỹβ〉 = 〈
Yα + A δ

α Zδ + B j
α Xj ,Yβ + A

γ
β Zγ + B k

β Xk

〉

= A β
α 〈Zβ,Yβ〉 + A α

β 〈Yα,Zα〉 +
∑
j

B j
α B

j
β〈Xj,Xj 〉

= (
A β

α + A α
β

) +
∑
j

B j
α B

j
β, (2.18)

and

0 = 〈X̃j , Ỹα〉 = 〈
Xj + C

β
j Zβ,Yα + A δ

α Zδ + B k
α Xk

〉

= C α
j 〈Zα,Yα〉 + B

j
α 〈Xj,Xj 〉

= C α
j + B

j
α , (2.19)

whereas the other scalar products are obviously zero. Furthermore, we claim
that the related 1-forms ϕ̃

β
α remain the same, while θ̃

j
α change to

θ̃ j
α = θ j

α − ϕ β
α B

j
β .

Indeed, differentiation yields

dZ̃α = ψ̃ β
α Z̃β + θ̃ j

α X̃j + ϕ̃ β
α Ỹβ

= ψ̃ β
α Zβ + θ̃ j

α

(
Xj + C

β
j Zβ

) + ϕ̃ β
α

(
Yβ + A

γ
β Zγ + B

j
β Xj

)

= dZα = ψ β
α Zβ + θj

αXj + ϕ β
α Yβ

and the claim follows from identifying the coefficients.

3 Cartan’s Lemma

We shall routinely use the Cartan’s Lemma for complex-valued forms:

Lemma 3.1 (Cartan’s Lemma) Let θ1, . . . , θr be complex-linearly indepen-
dent complex-valued 1-forms on a real manifold M and ϕ1, . . . , ϕr be further
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complex-valued 1-forms on M satisfying

θ1 ∧ ϕ1 + · · · + θr ∧ ϕr = 0. (3.1)

Then

ϕj = 0 mod {θ1, . . . , θr}
for each j = 1, . . . , r .

Proof Complete θ1, . . . , θr to a basis θ1, . . . , θs in the space of all complex-
valued 1-forms on M . Then we can write

ϕj = c k
j θk

for suitable coefficients c k
j . Then substituting into (3.1), using the fact that the

set of θi ∧ θj with i < j is a basis in the space of all 2-forms, and identifying
coefficients of θj ∧ θk for j ≤ r , k > r , we conclude

c k
j = 0, j ≤ r < k,

and the claim follows. �

4 Determination of Φ b
a and Θ J

a modulo ϕ using the Levi form
identities

Let p > q , p′ > q ′ be positive integers and let f be a local CR embedding
from Sp,q into Sp′,q ′ Denote by Bp,q and Bp′,q ′ the Grassmannian frame bun-
dles adapted to Sp,q and Sp′,q ′ respectively. We set n := p − q , n′ := p′ − q ′
and follow the index convention at the beginning of Sect. 2.

We shall consider the connection forms ϕ
β

α , θ
j

α , ψ
β

α , ω k
j , σ

β
j , ξ

β
α on

Bp,q pulled back to Sp,q and denote by capital letters Φ b
a , Θ J

a , Ψ b
a , Ω K

J ,
Σ b

K , Ξ b
a their corresponding counterparts on Bp′,q ′ pulled back to Sp′,q ′ .

Furthermore, we shall adopt the convention that any form is assumed to be
zero whenever its indices are out of the range where the form is defined, e.g.
θ J
a = 0 if either a > q or J > n, or ϕ b

a = 0 if either a > q or b > q .
Since ϕ = (ϕ

β
α ) and Φ = (Φ b

a ) are contact forms on Sp,q and Sp′,q ′ , re-

spectively, the pull back of Φ via f is a linear combination of ϕ = (ϕ
β

α ).
We shall abuse the notation by writing Σ instead of f ∗Σ for any form

Σ on Sp′,q ′ . Thus all our forms will be understood on Sp,q and any form on
Sp′,q ′ will be assumed pulled back to Sp,q via the given CR map f without
explicit mentioning.
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In this section our analysis will be based on using the structure equation for
ϕ modulo the ideal generated by the contact forms ϕ

β
α , i.e. on the equations

dϕ b
a = θ

j
a ∧ θ b

j mod ϕ, dΦ b
a = Θ J

α ∧ Θ b
J mod ϕ. (4.1)

By writing identities modulo ϕ we shall always mean that the difference be-
tween the left- and right-hand sides is contained in the ideal generated by the
components ϕ

β
α in the exterior algebra. In the second identity we have also

used the fact mentioned above that (the pullback of) any Φ b
a is a linear combi-

nation of ϕ
β

α . Note that due to our convention, both sides of the first equation
are zero if either a > q or b > q and for the same reason the summation is
only performed over j ∈ {1, . . . , n}.
4.1 Determination of Φ 1

1

Consider the diagonal terms Φ a
a , a = 1, . . . , q ′. Suppose that (the pullbacks

of) Φ a
a vanish identically for all a. Then (4.1) yields

0 = dΦ a
a = −

∑
J

Θ J
a ∧ Θ J

a mod ϕ.

Since each Θ J
a is a (1,0) form and each wedge product is non-negative on

(T , T̄ ) where T is any (1,0) vector, it follows that

Θ J
a = 0 mod ϕ,

which contradicts the assumption that f is an embedding.
Hence there exists at least one diagonal term of Φ whose pullback does

not vanish identically. Choose such a diagonal term of Φ , say Φ 1
1 . Then on

an open set, Φ 1
1 = 0. Since the pullback of Φ1

1 to Sp,q is a contact form, we
can write

Φ 1
1 = c β

α ϕ α
β

for some smooth functions c
β

α . Since (ϕ
β

α ) and (Φ b
a ) are antihermitian, the

matrix (c
β

α ) is hermitian. Then there exists a change of frame on Sp,q (change
of position in Definition 2.3) given by

Z̃α = U β
α Zβ, Ỹα = U β

α Yβ, X̃j = Xj,

for some unitary matrix U such that c
β
α is diagonalized and hence the new

contact forms ϕ
β

α , α,β = 1, . . . , q , satisfy

Φ 1
1 =

r∑
α=1

cαϕ α
α , 1 ≤ r ≤ q,
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where cα , α = 1, . . . , r , are nonzero real valued smooth functions. Then (4.1)
yields

∑
J

Θ J
1 ∧ Θ J

1 =
∑
α,j

cαθ j
α ∧ θ

j
α mod ϕ, (4.2)

which implies cα > 0 in view of the non-negativity mentioned above since

the forms θ
γ

α ∧ θ
γ

α are linearly independent. Hence after dilation of Φ 1
1 , we

may assume that

c1 = 1.

Lemma 4.1 Assuming n′ < 2n, we have r = 1 and

Φ 1
1 = ϕ 1

1 , (4.3)

Θ J
1 = θ J

1 mod ϕ. (4.4)

Proof Let

Θ J
1 = h

J,α
j θ j

α mod ϕ. (4.5)

Then (4.2) implies
∑
J

h
J,α
j h

J,β
k = cαδαβ · δjk,

where cα := 0 for α > r . Thus the vectors hα
j := (h

1,α
j , . . . , h

n′,α
j ) are pair-

wise orthogonal and have length cα independent of j . Therefore after a suit-
able rotation (see Definition 2.3)

Θ̃ J
a = Θ K

a U J
K ,

where (U J
K ) is unitary, we may assume that h1

j , whose length is c1 = 1, are

precisely the first n standard unit vectors in C
n′

, i.e.

h
J,1
j = δJj . (4.6)

Then for every fixed α = 1, we have n orthogonal vectors hα
j in the span of

the last n′ − n standard unit vectors. Since n′ − n < n by our assumption, the
latter is only possible when hα

j = 0 for all α = 1. Thus we obtain

h
J,α
j = δJj δ1α. (4.7)

Then (4.5) implies (4.4) and hence (4.2) implies r = 1 and therefore (4.1)
implies (4.3). �
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4.2 Determination of Φ 2
2 and Φ 1

2

Consider the ideal θα generated by θ
j

α for 1 ≤ j ≤ n. Let

Φ 1
a = λaϕ

1
1 mod

{
ϕ β

α ,α ≥ 2 or β ≥ 2
}
, a ≥ 2, (4.8)

for some smooth functions λa , a = 2, . . . , q ′. Then (4.1) together with
Lemma 4.1 imply

Θ
j

a ∧ θ 1
j = λaθ

j

1 ∧ θ 1
j mod {θα, θα, α ≥ 2}, ϕ, a ≥ 2. (4.9)

Then there exists a change of position that leaves Θ J
1 invariant and replaces

Θ J
a with Θ J

a − λaΘ
J

1 , a ≥ 2, (see the discussion after Definition 2.3). The
same change of position leaves Φ 1

1 invariant and transforms Φ 1
a into Φ 1

a −
λaΦ

1
1 for a ≥ 2. After performing such change of position, (4.8) becomes

Φ 1
a = 0 mod

{
ϕ β

α : α ≥ 2 or β ≥ 2
}
, a ≥ 2,

and (4.9) becomes

Θ
j

a ∧ θ 1
j = 0 mod {θα, θα : α ≥ 2}, ϕ, a ≥ 2. (4.10)

Since Θ
j

a are (1,0) but θ 1
j are (0,1) and linearly independent, it follows that

Θ
j

a = 0 mod {θα : α ≥ 2}, ϕ, a ≥ 2. (4.11)

Next for each a ≥ 2, let

Φ a
a = λa,βϕ

β

1 mod
{
ϕ γ

α : α ≥ 2
}

(4.12)

for some functions λa,β . Suppose there exists a and β such that λa,β = 0. We
may assume a = 2. Using the identity

dΦ 2
2 = Θ J

2 ∧ Θ 2
J mod Φ

together with (4.11) we obtain

n′∑
J=n+1

Θ J
2 ∧ Θ 2

J = λ2,βθ
j

1 ∧ θ
β

j mod {θα : α ≥ 2}, ϕ, (4.13)

where λ2,β = 0. On the left-hand side we have a linear combination of n′ − n

(1,0) forms, whereas on the right-hand side we have a linear combination of
at least n linear independent (1,0) forms with nonzero coefficients. Since n′−
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n < n, this is impossible. Hence we have λa,β = 0 for all a,β and therefore
(4.12) implies

Φ a
a = 0 mod

{
ϕ β

α : α ≥ 2
}
, a ≥ 2.

Since Φ b
a and ϕ

β
α are antihermitian, we also have

Φ a
a = 0 mod

{
ϕ β

α : β ≥ 2
}
, a ≥ 2,

and hence

Φ a
a = 0 mod

{
ϕ β

α : α,β ≥ 2
}
, a ≥ 2. (4.14)

Now (4.1) implies

n′∑
J=n+1

Θ J
a ∧ Θ J

a = 0 mod {θα : α ≥ 2}, ϕ, a ≥ 2, (4.15)

which implies

Θ J
a = 0 mod {θα : α ≥ 2}, ϕ, a ≥ 2, J > n. (4.16)

Together with (4.11) this yields

Θ J
a = 0 mod {θα : α ≥ 2}, ϕ, a ≥ 2. (4.17)

Now we redo our procedure for Φ b
a . We can write

Φ b
a = λ b

a
α
β ϕ β

α (4.18)

for which (4.1) yields

Θ J
a ∧ Θ b

J = λ b
a

α
β θ j

α ∧ θ
β

j mod ϕ.

Then substituting (4.17) we obtain

λ b
a

α
β θ j

α ∧ θ
β

j = 0 mod
{
θ k
γ ∧ θ δ

l : γ, δ ≥ 2
}
, ϕ, a, b ≥ 2, (4.19)

which implies

λ b
a

α
1 = λ b

a
1
β = 0, a, b ≥ 2. (4.20)

Hence (4.18) yields

Φ b
a = 0 mod

{
ϕ β

α : α,β ≥ 2
}
, a, b ≥ 2. (4.21)
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Summarizing we obtain the following:

Φ 1
a = 0 mod

{
ϕ β

α : α ≥ 2 or β ≥ 2
}
, a ≥ 2, (4.22)

Φ b
a = 0 mod

{
ϕ β

α : α,β ≥ 2
}
, a, b ≥ 2, (4.23)

Θ J
a = 0 mod {θα : α ≥ 2}, ϕ, a ≥ 2. (4.24)

Now repeat the argument from the beginning of this section and assume
first that Φ a

a = 0 for all a ≥ 2. We obtain

Θ J
a = 0 mod ϕ, a ≥ 2,

and hence df vanishes on the kernel of all θ
j

1 and ϕ
β
α . Since f is an embed-

ding, it follows that the latter kernel equals the full complex tangent space,
i.e. q = 1. In this case (4.16) implies

Θ J
a = 0 mod ϕ, a > 1 = q.

Then writing (4.18) and proceeding as before we obtain λ b
a

α
β = 0 and hence

Φ b
a = 0, q = 1. (4.25)

(Note that we have assumed q ≥ 2 excluding this case. However, we shall
repeat this procedure when a similar case will occur.)

In the remaining case q > 1, our assumption above cannot hold, i.e. Φ a
a =

0 for some a, say a = 2. Then (4.14) implies that, after a change of position
as before, we may assume that

Φ 2
2 =

∑
α≥2

cαϕ α
α

for some cα ≥ 0 not all zero. Then (4.1) yields

Θ J
2 ∧ Θ 2

J =
∑
α≥2

cαθ j
α ∧ θ α

j mod ϕ. (4.26)

Since the proof of Lemma 4.1 can be repeated for Φ 2
2 instead of Φ 1

1 , we
conclude that the rank of the left-hand side of (4.26) restricted to the complex
tangent space is n. Therefore, in the right-hand side, only one cα , say c2 can
be different from zero. After a dilation (see Definition 2.3), we may assume

Φ 2
2 = ϕ 2

2
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and hence
∑
J

Θ J
2 ∧ Θ J

2 =
∑
j

θ
j

2 ∧ θ
j

2 mod ϕ. (4.27)

We claim that each Θ J
2 is a linear combination of only θ

j

2 modulo ϕ.

Indeed, if Θ J
2 were a combination of θ

j
α modulo ϕ, where some of them

enters with a nonzero coefficient λα with α = 2, we would have θ
j

α ∧ θ
j

α

entering with positive coefficient ≥ λαλα in the right-hand side of (4.27),
which is impossible, proving our claim. As in the proof of Lemma 4.1 we
now write

Θ J
2 = hJ

j θ
j

2 mod ϕ. (4.28)

Since

Φ 1
2 = λ α

β ϕ β
α (4.29)

for suitable λ
β
α , we obtain

Θ J
2 ∧ Θ 1

J = λ α
β θ j

α ∧ θ
β

j mod ϕ, (4.30)

which in view of (4.28) and Lemma 4.1, yields

hk
j θ

j

2 ∧ θ 1
k = λ α

β θ j
α ∧ θ

β
j mod ϕ. (4.31)

Since the right-hand side contains no terms θ
j

α ∧ θ
β

k with j = k, it follows

that hk
j = 0 for j = k and hence h

j
j = λ 1

2 =: λ for all j and λ α
β = 0 for

(α,β) = (1,2). Then (4.28) implies

Θ
j

2 = λθ
j

2 mod ϕ. (4.32)

Finally, substituting (4.32) into (4.27) and identifying coefficients we obtain

λλ̄δij +
∑
J>n

hJ
ih

J
j = δij .

In particular, it follows that the vectors hi := (hn+1
i , . . . , hn′

i ) are orthogonal
and of the same length. But since we have assumed n′ − n < n, we must have
hi = 0 and therefore |λ| = 1. Now we perform a change of position as in
Definition 2.3 with W

β
α := cαδαβ with cα = 1 for α = 2 and c2 = λ. Then we

arrive at the following relations:

Φ a
a = ϕ a

a , a = 1,2, (4.33)
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Θ J
a = θ J

a mod ϕ, a = 1,2. (4.34)

Since after the last change of position, we have λ = 1 in (4.32), we obtain
from (4.31) that λ α

β = 0 unless α = 2 and β = 1, in which case λ 1
2 = 1. Then

substituting into (4.29) yields

Φ 1
2 = ϕ 1

2 . (4.35)

4.3 Determination of Φ b
a

Now we repeat again the arguments after the proof of Lemma 4.1, where we
replace 1 by 2 and 2 by 3, to arrive at the identities:

Φ 2
a = 0 mod

{
ϕ β

α : α ≥ 3 or β ≥ 3
}
, a ≥ 3, (4.36)

Φ b
a = 0 mod

{
ϕ β

α : α,β ≥ 3
}
, a, b ≥ 3, (4.37)

Θ J
a = 0 mod {θα : α ≥ 3}, ϕ, a ≥ 3. (4.38)

Then continuing following the arguments after (4.24) with the same replace-
ments, we obtain

Φ α
3 = ϕ α

3 , α = 1,2,3, (4.39)

Θ J
3 = θ J

3 mod ϕ. (4.40)

Finally, arguing by induction on b = 4, . . . , q ′, and proceeding by repeat-
ing the same arguments with 1 replaced by b and 2 by b + 1, we obtain the
following lemma.

Lemma 4.2 For any local CR embedding f from Sp,q into Sp′,q ′ , there is a
choice of sections of the bundles Bp,q → Sp,q and Bp′,q ′ → Sp′,q ′ such that
the pulled back forms satisfy

Φ b
a − ϕ b

a = 0,

Θ J
a − θ J

a = 0 mod ϕ.

Remark 4.3 A change of section of Bp,q → Sp,q (corresponding to a change
of frame on Sp,q ) has been used in course of the proof. However, once
Lemma 4.2 has been established, one can change the frame on Sp,q back
to the original one together with the corresponding change of the frame on
Sp′,q ′ involving only the subframe (Za,XJ ,Yb) with a, b ≤ q, J ≤ n, such
that the conclusion of the lemma remains valid.
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5 Determination of Θ J
a

In our next analysis we shall use the full structure equations for ϕ and Φ

which in view of Lemma 4.2 take the form

dϕ b
a = ψ

γ
a ∧ ϕ b

γ + θ
j

a ∧ θ b
j + ϕ

γ
a ∧ ψ̂ b

γ , (5.1)

dϕ b
a = Ψ

γ
a ∧ ϕ b

γ + Θ J
a ∧ Θ b

J + ϕ
γ

a ∧ Ψ̂ b
γ , (5.2)

and their difference

(
Ψ

γ
a −ψ

γ
a

)∧ϕ b
γ +Θ J

a ∧Θ b
J − θ

j
a ∧ θ b

j +ϕ
γ

a ∧ (
Ψ̂ b

γ − ψ̂ b
γ

) = 0, (5.3)

as well as the structure equations for θ and Θ :

dθ J
a = ψ β

a ∧ θ J
β + θ k

a ∧ ω J
k + ϕ β

a ∧ σ J
β , (5.4)

dΘ J
a = Ψ b

a ∧ Θ J
b + Θ K

a ∧ Ω J
K + ϕ β

a ∧ Σ J
β . (5.5)

Our next goal is to determine Θ J
a . It will be determined together with

components Ψ b
a and Ω J

K modulo ϕ. In view of Lemma 4.2 we can write

Θ J
a − θ J

a = η J
a

γ
β ϕ β

γ , (5.6)

for some η J
a

γ
β , and using the symmetry relations (2.8),

Θ a
J − θ a

J = η a
J

β
γ ϕ

γ
β , (5.7)

where

η a
J

β
γ := η J

a
γ
β . (5.8)

We will show that after a frame change, we may assume that

η J
a

γ
β = 0.

Using (5.6) we compute

Θ J
a ∧Θ b

J − θ
j

a ∧ θ b
j = η

j
a

γ
β ϕ β

γ ∧ θ b
j − θ

j
a ∧ η b

j
β
γ ϕ

γ
β mod ϕ ∧ϕ (5.9)

and (5.3) becomes

(
Ψ

γ
a − ψ

γ
a

) ∧ ϕ b
γ + ϕ

γ
a ∧ (

Ψ̂ b
γ − ψ̂ b

γ

)

+ η
j

a
γ
β ϕ β

γ ∧ θ b
j − θ

j
a ∧ η b

j
β
γ ϕ

γ
β = 0, mod ϕ ∧ ϕ (5.10)
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where ϕ ∧ ϕ stands for the space generated by all possible wedge products
ϕ

γ
β ∧ ϕ τ

δ . Together with (5.10) we shall consider the structure equations ob-
tained by differentiating (5.6) and using (4.1), (5.4) and (5.5):

η J
a

γ
β θ k

γ ∧ θ
β

k = (
Ψ β

a − ψ β
a

) ∧ θ J
β + θ k

a ∧ (
Ω J

k − ω J
k

)
mod ϕ. (5.11)

5.1 Determination of Θ J
a for a > q , J > n

In case a > q and J > n the right-hand side of (5.11) is zero. Since the forms
θ k
γ and θ

β
k are (1,0) and (0,1) respectively and are linearly independent, we

conclude

η J
a

γ
β = 0, a > q, J > n,

and hence (5.6) yields

Θ J
a = 0, a > q, J > n. (5.12)

5.2 Determination of Θ
j

a for a > q

For a > q , b = β ≤ q , (5.10) takes the form

0 = Ψ α
a ∧ ϕ β

α + η
j

a
α
δ ϕ δ

α ∧ θ
β

j mod ϕ ∧ ϕ, a > q. (5.13)

Since the forms �(ϕ α
β ), α < β , and �(ϕ α

β ), α ≤ β , are linearly independent

over R, it follows that ϕ
β

α are linearly independent over C. Then we can
collect the coefficients in front of these forms and apply complex Cartan’s
Lemma for a fixed β to obtain

Ψ α
a ∈ span

{
θ

β
j , ϕ

}
, a > q.

But Ψ α
a is independent of the choice of β . Therefore, since θ

β
j are linearly

independent and we have assumed q ≥ 2, we conclude that

Ψ α
a = 0 mod ϕ, a > q, (5.14)

and hence (5.13) implies

η k
a

γ
α ϕ α

γ = 0, a > q,

which in view of (5.6) yields

Θ
j

a = 0, a > q. (5.15)
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5.3 Reducing the freedom for Θ J
α for J > n

Next we use (5.11) in case a = α ≤ q and J > n that becomes

θ k
α ∧ Ω J

k = η J
α

γ
β θ k

γ ∧ θ
β

k mod ϕ, J > n. (5.16)

Since θ k
α are linearly independent and (1,0), whereas θ

β
k are (0,1), the term

with θ k
γ ∧ θ

β
k , γ = α, in the right-hand side cannot occur in the left-hand

side. Therefore

η
J γ

α β = 0 if γ = α, J > n,

and hence (5.6) becomes

Θ J
α = η J

α βϕ β
α , J > n, (5.17)

where

η J
α β := η J α

α β ,

and (5.16) becomes

θ k
α ∧ Ω J

k = η J
α βθ k

α ∧ θ
β

k mod ϕ, J > n, (5.18)

i.e.

θ k
α ∧ (

Ω J
k − η J

α βθ
β

k

) = 0 mod ϕ, J > n. (5.19)

Then using linear independence of θ k
α and applying Cartan’s Lemma, we

obtain

Ω J
k = η J

α βθ
β

k mod {ϕ, θα}, J > n. (5.20)

Since Ω J
k is independent of α and q ≥ 2 by our assumption, taking (0,1)

parts we obtain

η J
α β = ηJ

β, J > n, (5.21)

for some ηJ
β , hence (5.17) implies

Θ J
α = ηJ

βϕ β
α , J > n, (5.22)

and (5.20) yields

Ω J
k = ηJ

βθ
β

k mod ϕ, J > n, (5.23)

where we dropped θα on the right-hand side, since now both sides are inde-
pendent of α and since q ≥ 2 by our assumption.
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5.4 Reducing the freedom for Θ
j

α

Here we use the structure equation (5.10) in case a = α ≤ q and b = β ≤ q .
Then the forms ϕ

γ
α , γ = β , and ϕ

β
δ , δ = α, together with ϕ

β
α are linearly

independent. Therefore identifying the coefficients in front of these forms in
(5.10) and using Cartan’s Lemma yields

Ψ γ
α − ψ γ

α = 0 mod {θα, θβ, ϕ} if γ = α, (5.24)
(
Ψ α

α − ψ α
α

) − (
Ψ̂

β
β − ψ̂

β
β

) = 0 mod {θα, θβ, ϕ}. (5.25)

Since (Ψ
γ

α − ψ
γ

α ), γ = α, is independent of the choice of β and q ≥ 2, we
conclude

Ψ γ
α − ψ γ

α = 0 mod {θα,ϕ} if γ = α. (5.26)

Substituting now (5.26) into (5.11) for a = α ≤ q , J = j ≤ n, and iden-
tifying coefficients in front of θ k

γ ∧ θ
β

k for γ = α, since θ
j

γ are (1,0) and

linearly independent, whereas θ α
j = −θ

j
α are (0,1), we obtain

η
j γ

α β = 0 if γ = α.

In view of (5.26) we can write

Ψ γ
α − ψ γ

α = h
γ

α kθ
k

α mod ϕ, γ = α, (5.27)

for suitable h
γ

α k and put

h α
α k := 0. (5.28)

Then (5.11) for a = α ≤ q and J = j ≤ n becomes

{(
Ψ α

α − ψ α
α

)
δ

j
k − (

Ω
j

k − ω
j

k

)} ∧ θ k
α

+
∑
γ =α

(
Ψ γ

α − ψ γ
α

) ∧ θ j
γ = η j

α γ θ k
α ∧ θ

γ

k mod ϕ,

where

η
j

α β := η
j α

α β .

Substituting (5.27) yields

{(
Ψ α

α − ψ α
α

)
δ

j
k − (

Ω
j

k − ω
j

k + h
γ

α kθ
j

γ − η j
α γ θ

γ

k

)} ∧ θ k
α = 0 mod ϕ.

Now using Cartan’s Lemma we obtain

(
Ψ α

α −ψ α
α

)
δ

j
k − (

Ω
j

k −ω
j

k

) = −h
γ

α kθ
j

γ +η j
α γ θ

γ

k mod {ϕ, θα}. (5.29)
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As consequence of (5.25) and (2.8) we also have

(
Ψ α

α − ψ α
α

) + (
Ψ

β̄

β̄
− ψ

β̄

β̄

) = 0 mod {θα, θβ,ϕ}, (5.30)

and, in particular,

�(
Ψ α

α − ψ α
α

) = 0 mod {θα, θα,ϕ}. (5.31)

Furthermore, since Ω k
j and ω k

j are antihermitian in view of (2.8), taking
hermitian part with respect to (j, k) of (5.29), using (5.30) and identifying
coefficients in front of θ

γ

k = −θ k
γ , we obtain

h
γ

α j + η j
α γ = 0, if γ = α. (5.32)

Next, since Ω k
j and ω k

j are antihermitian, (5.30) implies

(
Ψ α

α −ψ α
α

)−(
Ω

j
j −ω

j
j

) = −(
Ψ

β̄

β̄
−ψ

β̄

β̄

)+(
Ω

j̄

j̄
−ω

j̄

j̄

)
mod {ϕ, θα, θβ}.

Hence using (5.29) for k = j and adding its conjugate with α replaced by β ,
using (5.32) and identifying the coefficients in front of θ

γ

j we obtain

η j
α γ = η

j
β γ , γ = β,

and hence

η j
α γ = ηj

γ

for suitable η
j
γ . Hence (5.6) implies

Θ j
α − θ j

α = η
j
βϕ β

α . (5.33)

5.5 Determination of Θ J
a by a change of frame

Let (B J
a ) be a matrix defined by

B J
α := ηJ

α, B J
a := 0, a > q,

where ηJ
α is defined by (5.21) for J > n. Consider the change of frame of

Sp′,q ′ discussed after Definition 2.3, given by

Z̃a = Za, X̃J = XJ + C b
J Zb, Ỹa = Ya + A b

a Zb + B J
a XJ

such that

C a
J := −B a

J
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and A b
a satisfies

(
A b

a + A a
b

) +
∑
J

B J
a B J

b = 0.

Since the sum here is hermitian, one can always choose A b
a with this property.

Then Φ b
a = ϕb

a remain the same while ΘJ
a change to

Θ J
a − ϕ b

a B J
b .

Therefore (5.33) becomes

Θ J
a = θ J

a , (5.34)

which is equivalent to ηJ
β = 0 and hence η

j
α γ = 0 and h

γ

α j = 0 in view of
(5.28) and (5.32). Therefore (5.29) implies

(
Ψ α

α − ψ α
α

)
δ

j
k − (

Ω
j

k − ω
j

k

) = 0 mod {ϕ, θα}, (5.35)

and (5.27) together with (5.14) implies

Ψ
γ

a − ψ
γ

a = 0 mod ϕ, if γ = a, (5.36)

and, since the left-hand side of (5.35) is independent of α for j = k, together
with (5.23) we obtain

Ω J
k − ω J

k = 0 mod ϕ, if J = k. (5.37)

6 Determination of Ψ
β

a and Ω J
k

Next, we use (5.34) in the structure equations for dθ J
a = dΘ J

a , which yield

(
Ψ β

a − ψ β
a

) ∧ θ J
β + θ k

a ∧ (
Ω J

k − ω J
k

) + ϕ β
a ∧ (

Σ J
β − σ J

β

) = 0. (6.1)

6.1 Determination of Ψ
β

a for a > q

In case a > q , J = j ≤ n, (6.1) takes the form

Ψ β
a ∧ θ

j
β = 0, a > q. (6.2)

Together with (5.36), this yields

Ψ β
a = 0, a > q. (6.3)
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6.2 Determination of Ω J
k and Σ J

β for J > n

Next use (6.1) for a = α ≤ q and J > n to obtain

θ k
α ∧ Ω J

k + ϕ β
α ∧ Σ J

β = 0, J > n.

By Cartan’s Lemma,

Ω J
k = 0 mod {θα,ϕα}, Σ J

β = 0 mod {θα,ϕα}, J > n, (6.4)

where ϕα is the ideal generated by ϕ
β

α for α fixed. Since Ω J
k and Σ J

β are
independent of α and q ≥ 2, we conclude

Ω J
k = Σ J

β = 0, J > n. (6.5)

We summarize the obtained alignment of the connection forms:

Proposition 6.1 For any local CR embedding f from Sp,q into Sp′,q ′ , there
is a choice of sections of the frame bundles Bp,q → Sp,q and Bp′,q ′ → Sp′,q ′
such that

Φ b
a = ϕ b

a , Θ J
a = θ J

a , (6.6)

Ψ β
a = 0, Ω K

j = 0, Σ K
α = 0, a > q, K > n. (6.7)

Remark 6.2 Similarly to Remark 4.3, we can restrict to changing only the
section of the second bundle Bp′,q ′ → Sp′,q ′ .

7 Embeddability in a plane of suitable dimension

Proposition 7.1 Under the assumptions of Theorem 1.1, there exist a (p+q)-
dimensional subspace V1 and a (q ′ − q)-dimensional subspace V2 in C

p′+q ′

with V1 ∩ V2 = 0 and such that 〈·, ·〉 nondegenerate of signature (p, q)

when restricted to V1 and null when restricted to V2 such that f (Sp,q) ⊂
Gr(V1, q) ⊕ V2.

Proof Denote by M ⊂ Sp,q the open subset where f is defined. Let Z,X,Y

be constant vector fields of C
p′+q ′

forming a Sp′,q ′ -frame adapted to M at a
fixed reference point in M . Let

Z̃a = λ b
a Zb + η K

a XK + ζ b
a Yb, (7.1)

X̃J = λ b
J Zb + η K

J XK + ζ b
J Yb, (7.2)

Ỹa = λ̃ b
a Zb + η̃ K

a XK + ζ̃ b
a Yb (7.3)
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be an adapted Sp′,q ′ -frame along M . Write

A =
⎛
⎝

λ b
a η K

a ζ b
a

λ b
J η K

J ζ b
J

λ̃ b
a η̃ K

a ζ̃ b
a

⎞
⎠ , (7.4)

so that (7.1)–(7.3) take the form

⎛
⎝

Z̃

X̃

Ỹ

⎞
⎠ = A

⎛
⎝

Z

X

Y

⎞
⎠ . (7.5)

Since Z,X,Y form an adapted frame at a reference point of M , we may
assume that

A = Ip′+q ′ (7.6)

at the reference point. Since Z,X,Y are constant vector fields, i.e., dZ =
dX = dY = 0, differentiating (7.5) and using (2.5) we obtain

dA = ΠA, (7.7)

where Π is the connection matrix of Sp′,q ′ , i.e.

dA =
⎛
⎜⎝

Ψ b
a Θ J

a Φ b
a

Σ b
K Ω J

K Θ b
K

Ξ b
a Σ J

a Ψ̂ b
a

⎞
⎟⎠A. (7.8)

Next, it follows from Proposition 6.1 that

dZ̃a =
∑
b>q

Ψ b
a Z̃b, a > q, (7.9)

in particular, the span of Z̃a , a > q , is independent of the point in M . Hence
together with (7.1) and (7.6), we conclude

η K
a = ζ b

a = 0, a > q. (7.10)

Furthermore, (7.8) implies

⎛
⎜⎝

dη K
a

dη K
J

dη̃ K
a

⎞
⎟⎠ =

⎛
⎜⎝

Ψ b
a Θ L

a Φ b
a

Σ b
J Ω L

J Θ b
J

Ξ b
a Σ L

a Ψ̂ b
a

⎞
⎟⎠

⎛
⎜⎝

η K
b

η K
L

η̃ K
b

⎞
⎟⎠ . (7.11)
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In particular, restricting to a = α ≤ q and J = j ≤ n and using Proposi-
tion 6.1 (together with the symmetry relations analogous to (2.8)) we obtain

⎛
⎜⎝

dη K
α

dη K
j

dη̃ K
α

⎞
⎟⎠ =

⎛
⎜⎝

Ψ b
α θ L

α ϕ b
α

Σ b
j Ω L

j θ b
j

Ξ b
α Σ L

α Ψ̂ b
α

⎞
⎟⎠

⎛
⎜⎝

η K
b

η K
L

η̃ K
b

⎞
⎟⎠ . (7.12)

Now with (7.10) and Proposition 6.1 taken into account, (7.12) becomes

⎛
⎜⎝

dη K
α

dη K
j

dη̃ K
α

⎞
⎟⎠ =

⎛
⎜⎜⎝

Ψ
β

α θ l
α ϕ

β
α

Σ
β

j Ω l
j θ

β
j

Ξ
β

α Σ l
α Ψ̂

β
α

⎞
⎟⎟⎠

⎛
⎜⎝

η K
β

η K
l

η̃ K
β

⎞
⎟⎠ . (7.13)

Repeating the above argument for ζ instead of η, we obtain

⎛
⎜⎝

dζ b
α

dζ b
j

dζ̃ b
α

⎞
⎟⎠ =

⎛
⎜⎜⎝

Ψ
β

α θ l
α ϕ

β
α

Σ
β

j Ω l
j θ

β
j

Ξ
β

α Σ l
α Ψ̂

β
α

⎞
⎟⎟⎠

⎛
⎜⎝

ζ b
β

ζ b
l

ζ̃ b
β

⎞
⎟⎠ . (7.14)

Thus each of the vector valued functions ηK := (η K
α , η K

j , η̃ K
α ) for a fixed

K and ζ b := (ζ b
α , ζ b

j , ζ̃ b
α ) for a fixed b satisfies a complete system of linear

first order differential equations. Then by the initial condition (7.6) and the
uniqueness of solutions, we conclude, in particular, that

η K = ζ b = 0, K > n, b > q. (7.15)

Hence (7.5) implies

Z̃α = λ b
α Zb + η k

α Xk + ζ β
α Yβ. (7.16)

Now setting

Ẑα := Z̃α −
∑
b>q

λb
αZb, (7.17)

we still have

span {Ẑα, Z̃q+1, . . . , Z̃q ′ } = span {Z̃a}, (7.18)

whereas (7.16) becomes

Ẑα = λ β
α Zβ + η k

α Xk + ζ β
α Yβ, (7.19)
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implying

span {Ẑα} ⊂ span {Z1, . . . ,Zq,X1, . . . ,Xn,Y1, . . . , Yq}.
Then together with (7.9) we conclude that

f (M) = span {Z̃a} = span {Ẑα} ⊕ span {Z̃q+1, . . . , Z̃q ′ }
= span {Ẑα} ⊕ span {Zq+1, . . . ,Zq ′ } ⊂ Gr(V1, q) ⊕ V2,

where

V1 = span {Z1, . . . ,Zq,X1, . . . ,Xn,Y1, . . . , Yq},
V2 = span {Zq+1, . . . ,Zq ′ }. (7.20)

�

8 Rigidity of CR embeddings from Sp,q to Sp′,q′

As consequence of Proposition 7.1, we conclude that, after a linear change of
coordinates, f (M) locally coincides with Sp,q linearly embedded into Sp′,q ′ .
Identifying M = Sp,q with its image, f becomes a local CR-automorphism
of M . Then by a theorem of Kaup-Zaitsev [26, Theorem 4.5], f is a restriction
of a global CR-automorphism of Sp,q . Furthermore, by [24, Theorem 8.5]
(see also [25]), f extends to a biholomorphic automorphism of the bounded
symmetric domain and the rigidity follows.

Acknowledgements The authors thank the anonymous referee for careful reading and help-
ful remarks.
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