Course 321 2006-07

Sheet 4

Due: after the lecture after the lecture next Thursday

Exercise 1

Show that the following functionals on C[0, 1] are bounded linear functionals and find their norms:

(i)
$$\varphi(f) = f(1) - f(0);$$

(ii) $\varphi(f) = 2 \int_0^{1/2} f(t) dt - \int_{1/2}^1 f(t) dt.$

Exercise 2

Let $A: V \to W$ be a bounded linear operator between normed spaces and let $C \ge 0$ be the smallest constant such that $||Ax|| \le C ||x||$ for all $x \in V$. Show that C = ||A||.

Exercise 3

Let $A_s: f(t) \mapsto f(t+s)$ be the family of shift operators on $L^p(\mathbb{R})$. Show that each A_s is a bounded linear operator and find its norm.

Exercise 4

Let V be a normed space, $V_0 \subset V$ a vector subspace. Consider the quotient space V/V_0 , i.e. the vector space of all cosets $[x] = x + V_0$, $x \in V$. Define

$$||[x]|| := \inf\{||y|| : y \in [x]\}.$$

- (i) Show that ||[x]|| is a norm on V/V_0 if and only if the subspace V_0 is closed in V.
- (ii) If V is Banach and V_0 is closed, show that V/V_0 with this norm is also Banach.

Exercise 5

Let V be the space of all sequences $x = (x_n)$ with $||x|| := \sum_n 2^n |x_n| < \infty$. Give a description for the dual space V^* and its norm.

Exercise 6

Consider the differential operator Af(x) = f'(x) from the subspace $C^1[a, b]$ of continuously differentiable functions into C[a, b]. Define

$$||f||_1 := \max_{a \le x \le b} |f(x)| + \max_{a \le x \le b} |f'(x)|.$$

Show:

- (i) $||f||_1$ is a norm on $C^1[a, b];$
- (ii) $A: C^1[a, b] \to C[a, b]$ is a bounded linear operator with respect to this norm.

Exercise 7

Prove that every closed subspace of a reflexive space is itself reflexive.

Exercise 8

Give an example of a bounded linear operator on a Banach space with infinitely many distinct eigenvalues.