Course 321 2006-07

Sheet 3

Due: after the lecture beginning next Term

Exercise 1

- (i) Give an example of a sequence of functions in $L^1[0, 1]$ which converge to 0 pointwise but not in $L^1[0, 1]$.
- (ii) Give an example of a sequence of functions in $L^1(\mathbb{R})$ which converge to 0 uniformly but not in $L^1(\mathbb{R})$.
- (iii) Is there an example in (ii) with [0, 1] instead of \mathbb{R} ?

Exercise 2

Give an example of a nested sequence of closed subsets F_n in \mathbb{R} with $\cap_n F_n = \emptyset$.

Exercise 3

Give an example of a topological space which is first countable but not second countable.

Exercise 4

Let τ be the collection of subsets of \mathbb{R} consisting of the empty set and all complements of countable subsets (countable sets include finite ones).

- (i) Show that τ is a topology on IR. Is it Hausdorff?
- (ii) Show that (\mathbb{I}, τ) is neither first nor second countable.
- (iii) Show that the only convergent sequences are stationary, i.e. the terms are the same starting from some index.
- (iv) Show that the closure of A = [0, 1] with respect to τ contains points x for which there is no sequence in A converging to x.
- (v) Give an example of a discontinuous function f on (\mathbb{R}, τ) such that $f(x_n) \to f(x)$ whenever x_n is a sequence with $x_n \to x$ as $n \to \infty$.

Exercise 5

(i) Let (X, d) be a metric space and define $\widetilde{d}(x, y) := \frac{d(x, y)}{1 + d(x, y)}$. Show that \widetilde{d} is a metric. (Hint. Use the monotonicity of $\varphi(t) = \frac{t}{1+t}$ to show that $a \leq b + c$ implies $\varphi(a) \leq \varphi(b) + \varphi(c)$.)

- (ii) Consider IR with the standard metric d(x, y) = |x y| and define \tilde{d} as above. Is (\mathbb{R}, \tilde{d}) complete?
- (iii) For a Fréchet space equipped with seminorms $||x||_n$, show that

$$d(x,y) := \sum_{n} \frac{1}{2^{n}} \frac{\|x-y\|_{n}}{1+\|x-y\|_{n}}$$

defines a metric.

Exercise 6

Let $C(\mathbb{R})$ denote the space of all continuous functions on \mathbb{R} and for $f \in C(\mathbb{R})$ define

$$||f||_n := \sup_{-n \le x \le n} |f(x)|.$$

- (i) Show that each $\|\cdot\|_n$ is a seminorm but not a norm.
- (ii) Show that $C(\mathbb{R})$ equipped with seminorms $\|\cdot\|_n$, $n \in \mathbb{N}$, is a Fréchet space.

Exercise 7

Let C((a, b)) be the space of all continuous functions on an open interval (a, b). Consider a family of closed subintervals $[a_n, b_n] \subset (a, b), n \in \mathbb{N}$, such that $\bigcup_n [a_n, b_n] = (a, b)$ and $[a_n, b_n] \subset [a_{n+1}, b_{n+1}]$ and define

$$||f||_n := \sup_{x \in [a_n, b_n]} |f(x)|.$$

- (i) Show that C((a, b)) equipped with seminorms $\|\cdot\|_n$, $n \in \mathbb{N}$, is a Fréchet space.
- (ii) Show that the topology on C((a, b)) defined by these seminorms is independent of the choice of the intervals $[a_n, b_n]$.

Exercise 8

Let $C^{\infty}[a, b]$ be the space of all infinitely differentiable real functions on [a, b]. For every $f \in C^{\infty}[a, b]$ and $n \geq 0$, define $||f||_n := \sup_{x \in [a, b]} |f^{(n)}(x)|$, where $f^{(n)}$ is the *n*th derivative. Show that $||f||_n$ are seminorms equipping $C^{\infty}[a, b]$ with the structure of a Fréchet space.

Exercise 9

A set A in a topological vector space (V, τ) is called bounded if, for every neighborhood U of 0, there exists a number $\lambda > 0$ such that $\lambda U \supset A$. Here $\lambda U := \{\lambda x : x \in U\}$. The space (V, τ) is called locally bounded if 0 has a bounded neighborhood.

- (i) Show that any normed space is locally bounded.
- (ii) Prove that the spaces in Exercises 7 and 8 are not normable, i.e. they do not admit any norm defining the underlined topology. (Hint. Show that they are not locally bounded.)