Course 321 2006-07

Sheet 1

Due: after the lecture next Thursday

Exercise 1

Give an example of a binary relation on a set which is

- (i) reflexive and symmetric, but not transitive;
- (ii) reflexive and transitive, but not symmetric;
- (iii) symmetric and transitive, but not reflexive;
- (iv) transitive, but neither reflexive nor symmetric.

Exercise 2

Prove that the following sets have the cardinality of the continuum:

- (i) any interval (a, b) with $-\infty \le a < b \le +\infty$;
- (ii) any interval [a, b) with a and b as above;
- (iii) the set of all infinite sequences of integers.

Exercise 3

- (i) Give an example of two (partial) order relations on a finite set that are nonisomorphic.
- (ii) Is such an example possible for linear order relations?

Exercise 4

- (i) Prove that the sum of ordinals is associative, i.e. $(\alpha_1 + \alpha_2) + \alpha_3 = \alpha_1 + (\alpha_2 + \alpha_3)$ holds for any ordinals α_1 , α_2 , α_3 .
- (ii) Is the product of ordinals also associative?
- (ii) Is the product of ordinals commutative?

Exercise 5

Let $n \ge 1$ be the ordinal of the finite set $\{1, \ldots, n\}$ and ω be the ordinal of the set of all natural numbers. Prove or disprove:

(i) $n + \omega = \omega;$

(ii) $\omega + n = \omega;$ (iii) $\omega + n + \omega = \omega + \omega;$ (iv) $\omega + \omega = 2 \cdot \omega;$ (vi) $\omega + \omega = \omega \cdot 2;$

Exercise 6

Show that the set of all disks contained in the square $[0, 1] \times [0, 1]$, ordered by inclusion, contans infinitely many maximal elements but no largest element.