Course 212 2004-05

Sheet 8

Due: after the lecture next Thursday

Exercise 1

Determine whether $f: A \to \mathbb{R}$ is uniformly continuous on A, when

(a) A = (0, 1), f(x) = x;(b) $A = (0, 1), f(x) = \sin(1/x);$ (c) $A = [1, +\infty), f(x) = 1/x.$

Exercise 2

Determine whether the family of functions $(f_{\lambda})_{\lambda \in \mathbb{R}}$ is equicontinuous at the origin:

(a) $f_{\lambda}(x) = x + \lambda;$

(b)
$$f_{\lambda}(x) = (x + \lambda)^2;$$

(c) $f_{\lambda}(x) = \lambda x$.

Exercise 3

Prove that if $A \subset \mathbb{R}$ is not compact, then there exists a continuous function $f: A \to \mathbb{R}$ which is not bounded on A. (Hint. Consider separately cases A is not bounded and A is not closed).

Exercise 4

Show that X is connected if and only if there does not exists a nonconstant continuous map f from X into the space $\{0, 1\}$ with discrete topology.