Course 212 2004-05

Sheet 10

Due:	after	the	lecture	next	Thursday	v

Exercise 1

Consider the vector space V of all sequences $x = (x_n)$ of real numbers with $\lim x_n = 0$.

- (a) Show that $||x|| := \sup_n |x_n|$ is a norm on V.
- (b) Is $(V, \|\cdot\|)$ a Banach space?

Exercise 2

Given two normed vector spaces V_1 and V_2 , define a norm on the direct sum $V_1 \oplus V_2$ by $||v_1 \oplus v_2|| := ||v_1|| + ||v_2||.$

- (a) Show that $V_1 \oplus V_2$ is a normed space.
- (b) Assume that V_1 and V_2 are Banach, is it always true that $V_1 \oplus V_2$ is also Banach?

Exercise 3

Let V be the space C[0,1] of all continuous functions (with the standard norm $\|\cdot\|_{\infty}$) and K(x,y) a given continuous function on $[0,1] \times [0,1]$.

(a) Define a linear operator $A: V \to V$ by the formula

$$(Af)(x):=\int_0^1 K(x,y)\,f(y)\,dy$$

and show that A is a bounded linear operator.

- (b) Calculate the norm of A in case $K(x, y) \ge 0$.
- (c) Give an upper estimate for the norm of A for general K(x, y).