New tools and conditions for global regularity of the $\bar{\partial}$ -Neumann operator Part 2 - Commutator type and formal orbits

Dmitri Zaitsev zaitsev@maths.tcd.ie

Trinity College Dublin

Notation: local defining functions

- smooth means always C^{∞} ;
- 2 $S \subset \mathbb{C}^{n+1}$, $n \ge 1$, (or $S \subset \mathbb{C}^n$, $n \ge 2$) is a smooth real hypersurface;
- **(a)** a *local defining function* r of S in a neighborhood U of $p \in S$ is any smooth real function with

$$S\cap U=\{r=0\}$$

and $dr \neq 0$ at every point of U;

any two local defining functions r₁, r₂ in U differ by a nonzero smooth function factor.

$$r_2(x) = a(x)r_1(x), \quad a(x) \neq 0.$$

- TS is the real tangent bundle;
- **2** $\mathbb{C}TS = \mathbb{C} \otimes_{\mathbb{R}} TS$ is the *complexified tangent bundle*;
- **◎** $H^{10}S = \{X \in \mathbb{C}TS : \partial r(X) = 0\}$ is the (1,0) bundle;
- $H^{01}S = \{X \in \mathbb{C}TS : \bar{\partial}r(X) = 0\}$ is the (0,1) bundle;
- $HS = \text{Re}H^{10}S = \text{Re}H^{01}S \subset TS$ is the *complex tangent bundle*;
- We have the standard relations:

$$H^{01}S = \overline{H^{10}S}, \quad \mathbb{C}HS = H^{10}S \oplus \overline{H^{10}S}.$$

Motivation: from finiteness conditions to global regularity

Dmitri Zaitsev (Trinity College Dublin) New tools and conditions for global regularity

Hypersurfaces with subbundles of finite commutator type

The following type notion goes back to Kohn's 1972 JDG paper:

Definition

The commutator type $t(E, p) \in \mathbb{N}_{\geq 2} \cup \{\infty\}$ at $p \in S$ of a subbundle $E \subset H^{10}S$ is

$$\min\{t \geq 2: \exists L^t, \ldots, L^1 \in \Gamma(E) \cup \Gamma(\overline{E}), [L^m, \ldots, [L^2, L^1] \ldots](p) \notin \mathbb{C}HS\}.$$

Our next goal is to show that finite commutator type for all subbundles implies finite tower multitype:

Theorem

For a pseudoconvex smooth hypersurface $S \subset \mathbb{C}^{n+1}$, assume $t(E, p) < \infty$ for any smooth subbundle $E \subset H^{10}S$ of rank 1 and any $p \in S$. Then S is of finite tower multitype at p.

This can be combined with previously shown implications to conclude compactness and global regularity in the $\bar\partial\text{-Neumann}$ problem.

Recall: special subbundles

We prove a stronger more refined version of the above theorem, where the commutator type finiteness $t(E, p) < \infty$ is only required to check for certain *special subbundles E*:

Definition (special subbundles)

A complex subbundle $E \subset H^{10}S$ is called special if it can be defined by

$$E = \{\xi \in H^{10}S : \omega_1(\xi) = \ldots = \omega_l(\xi) = 0\}, \quad \omega_1 \wedge \cdots \wedge \omega_l \neq 0 \text{ on } (H^{10}S)^l,$$

where each ω_j , j = 1, ..., l, is the θ -dual 1-form $\omega_j = \omega_{L_i^{t_j},...,L_i^1}$ for some

$$t_j \geq 1$$
 and vector fields $L_j^{t_j}, \ldots, L_j^1 \in \Gamma(H^{10}S) \cup \Gamma(\overline{H^{10}S})$.

Theorem (finite commutator type only for special subbundles) Assume $t(E, p) < \infty$ for any special subbundle $E \subset H^{10}S$ of rank ≥ 1 . Then S is of finite tower multitype at p.

Note that $t(E,p) < \infty$ implies $t(E',p) < \infty$ for any subbundle $E' \subset E$.

Various notions of orbits for sets of vector fields

To study commutators of vector fields geometrically, we employ constructions of their integral manifolds called *orbits*.

- Sussman orbits: the tangent space at a fixed point cannot be recovered from values of iterated commutators.
- Nagano orbits: only defined in the real-analytic category.

Instead, we use *formal orbits* defined in terms of formal Taylor series of arbitrary smooth vector fields.

Definition

Let \mathcal{L} be a set of smooth vector fields in a neighborhood of p in \mathbb{C}^n , and $\mathcal{R} \subset \mathbb{C}[[z - p, \overline{z - p}]]$ a subring of formal power series. The formal orbit $O = \mathcal{O}_{\mathcal{L}}^{\mathcal{R}}(p)$ is the formal variety given by the *formal power series ideal*

$$I(O) = \{f \in \mathcal{R} : L^t \cdots L^1 f(p) = 0, \ L^t, \dots, L^1 \in \mathcal{L}, \ t \ge 0\}.$$

Each $L^t \cdots L^1 f$, calculated via formal power series expansions, has the form

$$\sum_{lphaeta} c_{lphaeta}(z-p)^{lpha} (\overline{z-p})^{eta} \in \mathbb{C}[[z-p,\overline{z-p}].$$

Real and complex orbits of smooth subbundles

For a subbundle $E \subset H^{10}S$, consider the set $\mathcal{L} = \mathcal{L}(E)$ of smooth vector fields in a neighborhood of p in \mathbb{C}^n , whose restrictions to S are either in E or its conjugate:

$$\mathcal{L} = \mathcal{L}(E) = \{L : L|_{\mathcal{S}} \in \Gamma(E) \cup \Gamma(\overline{E})\}.$$

Note that the condition $L^t \cdots L^1 f(p) = 0$ for $L^j \in \mathcal{L}(E)$ only depends on the restrictions $L^j|_S$. We consider two subrings

$$\mathcal{R}_{\mathbb{R}} := \{f \in \mathbb{C}[[z - p, \overline{z - p}] : \overline{f} = f\} \quad \text{ and } \quad \mathcal{R}_{\mathbb{C}} := \mathbb{C}[[z - p]].$$

Definition

The real formal orbit (resp. complex formal orbit) of E is given by

$$\mathcal{O}_E^{\mathbb{R}} := \mathcal{O}_{\mathcal{L}(E)}^{\mathcal{R}_{\mathbb{R}}} \quad (\text{resp. } \mathcal{O}_E^{\mathbb{C}} := \mathcal{O}_{\mathcal{L}(E)}^{\mathcal{R}_{\mathbb{C}}}).$$

We shall show in our cases of interest, both orbits are so-called *formal* submanifolds.

Formal submanifolds and manifold ideals

It is a consquence of a "formal variant of Nagano's theorem" by Baouendi-Ebenfelt-Rothschild (an adaptation to the formal case of my unpublished proof of Nagano's theorem), that the real formal orbit $\mathcal{O}_E^{\mathbb{R}}$ is always a so-called *real formal submanifold*.

The definition is an adaptation of the definition of a germ at p of a smooth submanifold $M \subset \mathbb{C}^n$, whose ideal I(M) in the ring of smooth function germs at p is generated by a finite subset with linearly independent differentials at p:

Definition

A manifold ideal *I* in a ring *R* ⊂ ℂ[[*z* − *p*, *z* − *p*]] is one generated by k elements *F*₁,..., *F_k* ∈ *I* with linearly independent differentials at *p*.

A real (resp. complex) formal submanifold O at p in Cⁿ is one defined by a manifold ideal I = I(O) in R_ℝ (resp. R_ℂ).

Note that, unlike germs of smooth functions, we can only evaluate differentials of formal power series at the base point $p_{\text{constraint}}$

Orbits of subbundles of infinite Levi type

A small abuse of notation

We assume the contact form θ on S is extended to a neighborhood of p in \mathbb{C}^n (our construction will be independent of this extension).

Notation for formal Taylor series of smooth functions

Given a smooth function f in a neighborhood of p in \mathbb{C}^n , we write $j_p^{\infty} f \in \mathbb{C}[[z - p, \overline{z - p}]]$ for its *formal Taylor series* at p.

As direct consequence of our definition of the real orbit, we obtain:

Corollary

If E has infinite Levi type $c(E, p) = \infty$, i.e. $L^m \cdots L^3 \theta([L^2, L^1])(p) = 0$ for all $L^j \in \Gamma(E) \cup \Gamma(\overline{E})$, then

$$j_p^{\infty} \theta([L^2, L^1]) \in \mathbb{C}I(\mathcal{O}_E^{\mathbb{R}})$$

for all complex vector fields $L^2, L^1 \in \mathcal{L}(E)$.

Weighted expansion of nonnegative functions

Our next goal is to use *pseudoconvexity* to obtain some stronger conclusions. We need the following well-known lemma:

Lemma (positivity of the lowest weight component)

Let $f \ge 0$ be a nonnegative smooth function in a neighborhood of 0 in \mathbb{R}^m . Fix a collection of positive weights $\mu_j > 0$, j = 1, ..., m, and number $k \ge 0$, and consider a decomposition

$$f=f_k+f_{>k},$$

where f_k is weighted homogeneous of degree k, while the Taylor expansion of $f_{>k}$ at 0 consists of terms of weight > k. Then $f_k \ge 0$.

Proof The conclusion is obtained by taking the limit of

$$t^{-k}f(t^{\mu_1}x_1,\ldots,t^{\mu_m}x_m)\geq 0$$

as $t \to 0$ for each fixed $(x_1, \ldots, x_m) \in \mathbb{R}^m$.

Formal parametrizations of formal submanifolds

By the *implicit function theorem for formal power series*, after possible reordering coordinates, a manifold ideal I with k real generators also admits generators of the form

$$x_{j+m-k} - \phi_j(x'), \quad x' = (x_1, \dots, x_{m-k}), \quad j = 1, \dots, k,$$
 (1)

and hence the real formal power series map

$$A(x') := (x', \phi_1(x'), \ldots, \phi_k(x'))$$

satisfies

$$\operatorname{rank} dA(0) = k$$
, $F \circ A = 0$ for all $F \in I$.

Definition

Given a formal submanifold O with I(O) having k real generators, a real formal power series map H with

$$\operatorname{rank} dH(0) = k$$
, $F \circ A = 0$ for all $F \in I(O)$.

is called a (formal) parametrization of O.

$\mathsf{Pseudoconvexity} \implies \mathsf{Levi} \mathsf{ null cone coincides with kernel}$

Notation

Write j_p[∞]S for the formal submanifold defined by the ideal of all Taylor series of germs of smooth functions vanishing on S.

2 Write $O \subset O'$ for formal submanifolds O, O' whenever $I(O) \supset I(O')$.

In particular, for a subbundle $E \subset \mathbb{C}TM$, one has $\mathcal{O}_E^{\mathbb{R}} \subset j_0^{\infty}S$. A well-known result from Linear Algebra for a *positive semi-definite* hermitian form $h(\cdot, \cdot)$ asserts that h(L, L) = 0 for some L implies h(L, L') = 0 for any L'. We show a formal variant of this statement:

Proposition (Levi null cone vs Levi kernel)

Let $S \subset \mathbb{C}^n$ be *pseudoconvex*, $0 \in S$, and $O \subset j_0^{\infty}S$ a real formal submanifold. Let L, L' be smooth complex vector fields in a neighborhood of 0 in \mathbb{C}^n with $L|_S, L'|_S \in H^{10}S$. Then

$$j_0^{\infty}\theta([L,\overline{L}]) \in \mathbb{C}I(O) \implies j_0^{\infty}\theta([L,\overline{L'}]) \in \mathbb{C}I(O).$$

Proof of the Levi cone vs kernel proposition

Pseudoconvexity with suitable choice of θ implies for all $c \in \mathbb{C}$:

 $\theta([L+cL',\overline{L+cL'}]) = \theta([L,\overline{L}]) + 2\mathsf{Re}(\overline{c}\theta([L,\overline{L'}])) + c\overline{c}\theta([L',\overline{L'}]) \ge 0$

Since $O \subset j_p^{\infty}S$, there exists a smooth map germ $\gamma : (\mathbb{R}^q, 0) \to (S, 0)$ such that $j_0^{\infty}\gamma$ is a formal parametrization of O. Take pullbacks under γ :

$$\gamma^*\theta([L,\overline{L}]) + 2\mathsf{Re}(\overline{c}\gamma^*\theta([L,\overline{L'}])) + c\overline{c}\gamma^*\theta([L',\overline{L'}]) \geq 0'$$

Since $j_0^{\infty}\theta([L,\overline{L'}]) \in \mathbb{C}I(O) \iff \gamma^*\theta([L,\overline{L'}])$ vanishes of infininte order, assume by contradiction that order *s* to be finite. Assign weights 1 to $(t_1,\ldots,t_q) \in \mathbb{R}^q$ and $\mu = s + 1$ to (Rec, Imc). The middle term has the lowest weight term $2\text{Re}(\overline{c}\gamma^*\theta([L,\overline{L'}]))_{s+\mu} \neq 0$, $c\overline{c}\gamma^*\theta([L',\overline{L'}])$ has weight $\geq 2\mu > s + \mu$, and $\gamma^*\theta([L,\overline{L}])$ vanishes of infinite order when $j_p^{\infty}\theta([L,\overline{L}]) \in \mathbb{C}I(O)$. Therefore, the lowest weight term satisfies

$$2\operatorname{Re}(\overline{c}\gamma^*\theta([L,\overline{L'}]))_{s+\mu} \geq 0$$

by positivity lemma. Since c is arbitrary, the left-hand side must vanish, which contradicts the above conclusion in red, completing the proof. $_{\pm}$

Complex-tangential property for real orbits

Notation

- For a subbundle E, denote by j[∞]_p E the space of all formal Taylor expansions of complex vector fields in whose restrictions to S are in E.
- For a formal submanifold O, denote by D_O the module of all *formal vector fields* L tangent to O in the sense of L(I(O)) ⊂ I(O).

Corollary

Let S be pseudoconvex and a subbundle $E \subset H^{10}S$ be of infinite Levi type at $p \in S$. Then $O = O_E^{\mathbb{R}}(p)$ satisfies:

- $[j_p^{\infty}(E \oplus \overline{E}), j_p^{\infty} \mathbb{C}HS] \subset j_p^{\infty} \mathbb{C}HS \mod \mathbb{C}I(O).$
- $\ 2 \ \ [D_O, j_p^{\infty} \mathbb{C}HS] \subset j_p^{\infty} \mathbb{C}HS \ \ \, \mathrm{mod} \ \ \mathbb{C}I(O).$
- **(3)** The orbit O is complex-tangential to $j_p^{\infty}S$ in the sense that

$$D_O \subset j_p^\infty \mathbb{C}HS \mod \mathbb{C}I(O).$$

Proof of (1)

Consider formal vector fields in $j_p^{\infty} E$ and $j_p^{\infty} H^{10}S$ which are Taylor series at p of smooth vector fields L, L' whose restrictions to S are in E and $H^{10}S$ respectively. Since E is of *infinite Levi type*,

 $j_p^{\infty}\theta([L,\overline{L}]) \in \mathbb{C}I(\mathcal{O}),$

and the "Levi null cone vs kernel proposition" implies

 $j_p^{\infty}\theta([L,\overline{L'}]) \in \mathbb{C}I(O).$

The above holds also for L' with $L'|_S \in H^{01}S$, since $H^{10}S$ is an involutive distribution in $\mathbb{C}TS$ by the integrability of the CR structure. Since θ is a contact form,

$$[j_p^{\infty} E, j_p^{\infty} \mathbb{C} HS] \subset j_p^{\infty} \mathbb{C} HS \mod \mathbb{C} I(O),$$

To show (2), observe that (1) along with Jacobi identity implies that

$$[L, j_p^{\infty} \mathbb{C}HS] \subset j_p^{\infty} \mathbb{C}HS \mod \mathbb{C}I(O)$$

for any L which is an iterated Lie bracket of formal vector fields in $j_p^{\infty}(E \oplus \overline{E})$. Since $O = \mathcal{O}_E^{\mathbb{R}}(p)$ is the orbit of the Lie algebra $\mathfrak{g} = \mathfrak{g}_E^{\mathbb{R}}$ spanned by the real parts $\operatorname{Re} L = \frac{1}{2}(L + \overline{L})$ of iterated Lie brackets, it follows that

$$[\mathfrak{g}, j_p^{\infty} \mathbb{C}HS] \subset j_p^{\infty} \mathbb{C}HS \mod \mathbb{C}I(O).$$

It can be shown that the orbit O satisfies $D_O = \mathfrak{g} \mod I(O)$, proving (2).

Now, since $E \oplus \overline{E} \subset \mathbb{C}HS$, by repeatedly using (1), we conclude that any iterated Lie bracket of vector fields in $j_p^{\infty}(E \oplus \overline{E})$ is contained in $j_p^{\infty}\mathbb{C}HS$ modulo $\mathbb{C}I(O)$. As before, using the relation $D_O = \mathfrak{g} \mod I(O)$ completes the proof of (3).

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Finite commutator type implies finite tower multitype

We use the above Corollary, part (3) to conclude the inclusion of tangent spaces $T_p O \subset H_p S$,

where the T_pO is defined by the vanishing of all df(p) with $f \in I(O)$. We now restate and prove the main theorem of this lecture:

Theorem (finite commutator type only for special subbundles)

Assume $t(E, p) < \infty$ for any special subbundle $E \subset H^{10}S$ of rank 1. Then S is of finite tower multitype at p.

Proof. It suffices to show finite Levi type at p for any *special subbundle* $E \subset H^{10}S$ of rank ≥ 1 , since that implies *finite tower multitype* at p as we proved in Lecture 1. Assume by contradiction, there is a special subbundle E of rank ≥ 1 , which is of *infinite Levi type* at p. Then the above inclusion of tangent spaces holds, and since formal Taylor series of any iterated commutator $[L^m, \ldots, [L^2, L^1] \ldots]$ for $L^m, \ldots, L^1 \in \Gamma(E) \cup \Gamma(\overline{E})$, are tangent to the formal orbit $O = \mathcal{O}_E^{\mathbb{R}}(p)$, their values at p stay in $\mathbb{C}H_pS$, contradicting $t(E, p) < \infty$.