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Notation: local defining functions

1 smooth means always C∞;

2 S ⊂ Cn+1, n ≥ 1, (or S ⊂ Cn, n ≥ 2) is a smooth real hypersurface;

3 a local defining function r of S in a neighborhood U of p ∈ S is any
smooth real function with

S ∩ U = {r = 0}

and dr ̸= 0 at every point of U;

4 any two local defining functions r1, r2 in U differ by a nonzero smooth
function factor:

r2(x) = a(x)r1(x), a(x) ̸= 0.
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Notation: tangent bundles

1 TS is the real tangent bundle;

2 CTS = C⊗R TS is the complexified tangent bundle;

3 H10S = {X ∈ CTS : ∂r(X ) = 0} is the (1, 0) bundle;

4 H01S = {X ∈ CTS : ∂̄r(X ) = 0} is the (0, 1) bundle;

5 HS = ReH10S = ReH01S ⊂ TS is the complex tangent bundle;

6 We have the standard relations:

H01S = H10S , CHS = H10S ⊕ H10S .

Dmitri Zaitsev (Trinity College Dublin) New tools and conditions for global regularity of the ∂̄-Neumann operator 3 / 18



Motivation: from finiteness conditions to global regularity

finiteness conditions generalized stratifications

condition R property (Pq)

global regularity compactness

Shown in Lecture 1:

finite Levi type finite tower multitype

generalized stratifications

Our next goal will be to extend the first implication to another finiteness
condition based on the commutator type.
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Hypersurfaces with subbundles of finite commutator type

The following type notion goes back to Kohn’s 1972 JDG paper:

Definition

The commutator type t(E , p) ∈ N≥2 ∪ {∞} at p ∈ S of a subbundle
E ⊂ H10S is

min{t ≥ 2 : ∃Lt , . . . , L1 ∈ Γ(E ) ∪ Γ(E ), [Lm, . . . , [L2, L1] . . .](p) ̸∈ CHS}.

Our next goal is to show that finite commutator type for all subbundles
implies finite tower multitype:

Theorem

For a pseudoconvex smooth hypersurface S ⊂ Cn+1, assume t(E , p) < ∞
for any smooth subbundle E ⊂ H10S of rank 1 and any p ∈ S. Then S is
of finite tower multitype at p.

This can be combined with previously shown implications to conclude
compactness and global regularity in the ∂̄-Neumann problem.
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Recall: special subbundles

We prove a stronger more refined version of the above theorem, where the
commutator type finiteness t(E , p) < ∞ is only required to check for
certain special subbundles E :

Definition (special subbundles)

A complex subbundle E ⊂ H10S is called special if it can be defined by

E = {ξ ∈ H10S : ω1(ξ) = . . . = ωl(ξ) = 0}, ω1∧· · ·∧ωl ̸= 0 on (H10S)l ,

where each ωj , j = 1, . . . , l , is the θ-dual 1-form ωj = ω
L
tj
j ,...,L

1
j

for some

tj ≥ 1 and vector fields L
tj
j , . . . , L

1
j ∈ Γ(H10S) ∪ Γ(H10S)).

Theorem (finite commutator type only for special subbundles)

Assume t(E , p) < ∞ for any special subbundle E ⊂ H10S of rank ≥ 1.
Then S is of finite tower multitype at p.

Note that t(E , p) < ∞ implies t(E ′, p) < ∞ for any subbundle E ′ ⊂ E .
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Various notions of orbits for sets of vector fields

To study commutators of vector fields geometrically, we employ
constructions of their integral manifolds called orbits.

1 Sussman orbits: the tangent space at a fixed point cannot be
recovered from values of iterated commutators.

2 Nagano orbits: only defined in the real-analytic category.

Instead, we use formal orbits defined in terms of formal Taylor series of
arbitrary smooth vector fields.

Definition

Let L be a set of smooth vector fields in a neighborhood of p in Cn, and
R ⊂ C[[z − p, z − p]] a subring of formal power series. The formal orbit
O = OR

L (p) is the formal variety given by the formal power series ideal

I (O) = {f ∈ R : Lt · · · L1f (p) = 0, Lt , . . . , L1 ∈ L, t ≥ 0}.

Each Lt · · · L1f , calculated via formal power series expansions, has the form∑
αβ cαβ(z − p)α(z − p)β ∈ C[[z − p, z − p].
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Real and complex orbits of smooth subbundles

For a subbundle E ⊂ H10S , consider the set L = L(E ) of smooth vector
fields in a neighborhood of p in Cn, whose restrictions to S are either in E
or its conjugate:

L = L(E ) = {L : L|S ∈ Γ(E ) ∪ Γ(E )}.

Note that the condition Lt · · · L1f (p) = 0 for Lj ∈ L(E ) only depends on
the restrictions Lj |S . We consider two subrings

RR := {f ∈ C[[z − p, z − p] : f̄ = f } and RC := C[[z − p]].

Definition

The real formal orbit (resp. complex formal orbit) of E is given by

OR
E := ORR

L(E) (resp. OC
E := ORC

L(E)).

We shall show in our cases of interest, both orbits are so-called formal
submanifolds.
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Formal submanifolds and manifold ideals

It is a consquence of a “formal variant of Nagano’s theorem” by
Baouendi-Ebenfelt-Rothschild (an adaptation to the formal case of my
unpublished proof of Nagano’s theorem), that the real formal orbit OR

E is
always a so-called real formal submanifold.
The definition is an adaptation of the definition of a germ at p of a
smooth submanifold M ⊂ Cn, whose ideal I (M) in the ring of smooth
function germs at p is generated by a finite subset with linearly
independent differentials at p:

Definition
1 A manifold ideal I in a ring R ⊂ C[[z − p, z − p]] is one generated by

k elements F1, . . . ,Fk ∈ I with linearly independent differentials at p.

2 A real (resp. complex) formal submanifold O at p in Cn is one
defined by a manifold ideal I = I (O) in RR (resp. RC).

Note that, unlike germs of smooth functions, we can only evaluate
differentials of formal power series at the base point p.
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Orbits of subbundles of infinite Levi type

A small abuse of notation

We assume the contact form θ on S is extended to a neighborhood of p in
Cn (our construction will be independent of this extension).

Notation for formal Taylor series of smooth functions

Given a smooth function f in a neighborhood of p in Cn, we write
j∞p f ∈ C[[z − p, z − p]] for its formal Taylor series at p.

As direct consequence of our definition of the real orbit, we obtain:

Corollary

If E has infinite Levi type c(E , p) = ∞, i.e. Lm · · · L3θ([L2, L1])(p) = 0 for
all Lj ∈ Γ(E ) ∪ Γ(E ), then

j∞p θ([L2, L1]) ∈ CI (OR
E )

for all complex vector fields L2, L1 ∈ L(E ).
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Weighted expansion of nonnegative functions

Our next goal is to use pseudoconvexity to obtain some stronger
conclusions. We need the following well-known lemma:

Lemma (positivity of the lowest weight component)

Let f ≥ 0 be a nonnegative smooth function in a neighborhood of 0 in
Rm. Fix a collection of positive weights µj > 0, j = 1, . . . ,m, and number
k ≥ 0, and consider a decomposition

f = fk + f>k ,

where fk is weighted homogeneous of degree k, while the Taylor expansion
of f>k at 0 consists of terms of weight > k. Then fk ≥ 0.

Proof The conclusion is obtained by taking the limit of

t−k f (tµ1x1, . . . , t
µmxm) ≥ 0

as t → 0 for each fixed (x1, . . . , xm) ∈ Rm.
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Formal parametrizations of formal submanifolds

By the implicit function theorem for formal power series, after possible
reordering coordinates, a manifold ideal I with k real generators also
admits generators of the form

xj+m−k − ϕj(x
′), x ′ = (x1, . . . , xm−k), j = 1, . . . , k, (1)

and hence the real formal power series map

A(x ′) := (x ′, ϕ1(x
′), . . . , ϕk(x

′))
satisfies

rank dA(0) = k , F ◦ A = 0 for all F ∈ I .

Definition

Given a formal submanifold O with I (O) having k real generators, a real
formal power series map H with

rank dH(0) = k , F ◦ A = 0 for all F ∈ I (O).

is called a (formal) parametrization of O.
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Pseudoconvexity =⇒ Levi null cone coincides with kernel

Notation
1 Write j∞p S for the formal submanifold defined by the ideal of all

Taylor series of germs of smooth functions vanishing on S .

2 Write O ⊂ O ′ for formal submanifolds O,O ′ whenever I (O) ⊃ I (O ′).

In particular, for a subbundle E ⊂ CTM, one has OR
E ⊂ j∞0 S .

A well-known result from Linear Algebra for a positive semi-definite
hermitian form h(·, ·) asserts that h(L, L) = 0 for some L implies
h(L, L′) = 0 for any L′. We show a formal variant of this statement:

Proposition (Levi null cone vs Levi kernel)

Let S ⊂ Cn be pseudoconvex, 0 ∈ S , and O ⊂ j∞0 S a real formal
submanifold. Let L, L′ be smooth complex vector fields in a neighborhood
of 0 in Cn with L|S , L′|S ∈ H10S . Then

j∞0 θ([L, L]) ∈ CI (O) =⇒ j∞0 θ([L, L′]) ∈ CI (O).
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Proof of the Levi cone vs kernel proposition

Pseudoconvexity with suitable choice of θ implies for all c ∈ C:

θ([L+ cL′, L+ cL′]) = θ([L, L]) + 2Re(cθ([L, L′])) + ccθ([L′, L′]) ≥ 0

Since O ⊂ j∞p S , there exists a smooth map germ γ : (Rq, 0) → (S , 0) such
that j∞0 γ is a formal parametrization of O. Take pullbacks under γ:

γ∗θ([L, L]) + 2Re(cγ∗θ([L, L′])) + ccγ∗θ([L′, L′]) ≥ 0′

Since j∞0 θ([L, L′]) ∈ CI (O) ⇐⇒ γ∗θ([L, L′]) vanishes of infininte order,
assume by contradiction that order s to be finite. Assign weights 1 to
(t1, . . . , tq) ∈ Rq and µ = s + 1 to (Rec , Imc). The middle term has the
lowest weight term 2Re(cγ∗θ([L, L′]))s+µ ̸≡ 0, ccγ∗θ([L′, L′]) has weight
≥ 2µ > s + µ, and γ∗θ([L, L]) vanishes of infinite order when
j∞p θ([L, L]) ∈ CI (O). Therefore, the lowest weight term satisfies

2Re(cγ∗θ([L, L′]))s+µ ≥ 0

by positivity lemma. Since c is arbitrary, the left-hand side must vanish,
which contradicts the above conclusion in red, completing the proof.
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Complex-tangential property for real orbits

Notation
1 For a subbundle E , denote by j∞p E the space of all formal Taylor

expansions of complex vector fields in whose restrictions to S are in E .

2 For a formal submanifold O, denote by DO the module of all formal
vector fields L tangent to O in the sense of L(I (O)) ⊂ I (O).

Corollary

Let S be pseudoconvex and a subbundle E ⊂ H10S be of infinite Levi type
at p ∈ S. Then O = OR

E (p) satisfies:

1 [j∞p (E ⊕ E ), j∞p CHS ] ⊂ j∞p CHS mod CI (O).

2 [DO , j
∞
p CHS ] ⊂ j∞p CHS mod CI (O).

3 The orbit O is complex-tangential to j∞p S in the sense that

DO ⊂ j∞p CHS mod CI (O).
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Proof of (1)

Consider formal vector fields in j∞p E and j∞p H10S which are Taylor series
at p of smooth vector fields L, L′ whose restrictions to S are in E and
H10S respectively. Since E is of infinite Levi type,

j∞p θ([L, L]) ∈ CI (O),

and the “Levi null cone vs kernel proposition” implies

j∞p θ([L, L′]) ∈ CI (O).

The above holds also for L′ with L′|S ∈ H01S , since H10S is an involutive
distribution in CTS by the integrability of the CR structure. Since θ is a
contact form,

[j∞p E , j∞p CHS ] ⊂ j∞p CHS mod CI (O),

from which (1) follows, since the right-hand side is invariant under
conjugation.
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Proof of (2) and (3)

To show (2), observe that (1) along with Jacobi identity implies that

[L, j∞p CHS ] ⊂ j∞p CHS mod CI (O)

for any L which is an iterated Lie bracket of formal vector fields in
j∞p (E ⊕ E ). Since O = OR

E (p) is the orbit of the Lie algebra g = gRE
spanned by the real parts ReL = 1

2(L+ L) of iterated Lie brackets, it
follows that

[g, j∞p CHS ] ⊂ j∞p CHS mod CI (O).

It can be shown that the orbit O satisfies DO = g mod I (O), proving (2).

Now, since E ⊕ E ⊂ CHS , by repeatedly using (1), we conclude that any
iterated Lie bracket of vector fields in j∞p (E ⊕ E ) is contained in j∞p CHS
modulo CI (O). As before, using the relation DO = g mod I (O)
completes the proof of (3).
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Finite commutator type implies finite tower multitype

We use the above Corollary, part (3) to conclude the inclusion of tangent
spaces TpO ⊂ HpS ,

where the TpO is defined by the vanishing of all df (p) with f ∈ I (O). We
now restate and prove the main theorem of this lecture:

Theorem (finite commutator type only for special subbundles)

Assume t(E , p) < ∞ for any special subbundle E ⊂ H10S of rank 1. Then
S is of finite tower multitype at p.

Proof. It suffices to show finite Levi type at p for any special subbundle
E ⊂ H10S of rank ≥ 1, since that implies finite tower multitype at p as we
proved in Lecture 1. Assume by contradiction, there is a special subbundle
E of rank ≥ 1, which is of infinite Levi type at p. Then the above
inclusion of tangent spaces holds, and since formal Taylor series of any
iterated commutator [Lm, . . . , [L2, L1] . . .] for Lm, . . . , L1 ∈ Γ(E ) ∪ Γ(E ),
are tangent to the formal orbit O = OR

E (p), their values at p stay in
CHpS , contradicting t(E , p) < ∞.
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