New tools and conditions for global regularity of the $\bar{\partial}$ -Neumann operator Part 1 - Tower Multitype

Dmitri Zaitsev zaitsev@maths.tcd.ie

Trinity College Dublin

Dmitri Zaitsev (Trinity College Dublin) New tools and conditions for global regularity

Notation: local defining functions

- smooth means always C^{∞} ;
- 2 $S \subset \mathbb{C}^{n+1}$, $n \ge 1$, (or $S \subset \mathbb{C}^n$, $n \ge 2$) is a smooth real hypersurface;
- **(a)** a *local defining function* r of S in a neighborhood U of $p \in S$ is any smooth real function with

$$S\cap U=\{r=0\}$$

and $dr \neq 0$ at every point of U;

any two local defining functions r₁, r₂ in U differ by a nonzero smooth function factor.

$$r_2(x) = a(x)r_1(x), \quad a(x) \neq 0.$$

- TS is the real tangent bundle;
- **2** $\mathbb{C}TS = \mathbb{C} \otimes_{\mathbb{R}} TS$ is the *complexified tangent bundle*;
- **◎** $H^{10}S = \{X \in \mathbb{C}TS : \partial r(X) = 0\}$ is the (1,0) bundle;
- $H^{01}S = \{X \in \mathbb{C}TS : \bar{\partial}r(X) = 0\}$ is the (0,1) bundle;
- $HS = \text{Re}H^{10}S = \text{Re}H^{01}S \subset TS$ is the *complex tangent bundle*;
- We have the standard relations:

$$H^{01}S = \overline{H^{10}S}, \quad \mathbb{C}HS = H^{10}S \oplus \overline{H^{10}S}.$$

Motivation: from finiteness conditions to global regularity

Here we shall focus on the more general *finite tower multitype* condition and the first implication shown in red.

Generalized stratifications with convexity properties

The goal in the first implication is to obtain generalized stratifications of the hypersurface S with certain *convexity properties*:

Definition (generalizing regular domains by Catlin-Diederich-Fornaess)

A hypersurface $S \subset \mathbb{C}^{n+1}$ is countably *q*-regular $(1 \le q \le n)$ if it is a countable disjoint union $S = \bigcup_{k=1}^{\infty} S_k$ of locally closed subsets $S_k \subset S$ ("strata") such that for each k and $p \in S_k$, there exists a CR submanifold $M \subset S$ satisfying the following properties:

- M contains an open neighborhood of p in S_k (in relative topology);
- ◎ dim_ℂ($H_x^{10}M \cap K_x^{10}$) < q for all $x \in M$, where $K_x^{10} \subset H_x^{10}S$ is the *kernel of the Levi form* of S.

When q = 1 and S is pseudoconvex, condition (2) simply means that the Levi form of S is *positive definite along* $H^{10}M$. This allows constructions of *bounded* local *weight functions aka barriers aka bumps* with *large complex hessians* on strata S_k as $C(r + \sum_j r_j^2)$, where r (resp. r_j) are local defining functions of S (resp. M).

Bounded barriers with large complex hessians (BBLH)

The *complex hessian* of a real function λ is the hermitian quadratic form

$$H_{\lambda}(X) := \sum \lambda_{z_j \overline{z}_k} X_j \overline{X}_k.$$

By definition, property $(P_1) \iff$ the existence of BBLH on a set A means the existence of functions λ with $0 \le \lambda \le 1$ in a neighborhood of A with arbitrarily large complex hessian (the neighborhood of A depends on how large is the hessian).

Sibony's *B*-regularity theory

Local existence of BBLH for strata S_k implies global existence of BBLH for their countable unions.

Vast applications of BBLH — passing from flexible to rigid objects:

- a priori estimates for $\bar{\partial}$ leading to compactness and global regularity by Kohn-Nirenberg;
- regularity of the Bergman projection aka *condition R* by Bell-Ligocka implying boundary smoothness of proper holomorphic maps;
- estimates for reproducing kernels and invariant metrics.

Back to our tools: Forms dual to lists of vector fields

Definition

- A complex contact form θ on S is any nonzero \mathbb{C} -valued 1-form vanishing on $\mathbb{C}HS = H^{10}S \oplus \overline{H^{10}S} \subset \mathbb{C}TS$.
- **2** The θ -dual form of an (ordered) list of complex vector fields

$$L^t,\ldots,L^1\in \Gamma(H^{10}S)\cup \Gamma(\overline{H^{10}S})),\quad t\geq 1,$$

is the complex 1-form $\omega_{L^t,...,L^1;\theta}$ on $H^{10}S$ defined for $L \in \Gamma(H^{10}S)$, $p \in S$, by

$$\begin{cases} \omega_{L^{1};\theta}(L_{\rho}) := \theta([L,L^{1}])(\rho) & t = 1\\ \omega_{L^{t},\dots,L^{1};\theta}(L_{\rho}) := L \operatorname{Re}(L^{t} \cdots L^{3}\theta([L^{2},L^{1}]))(\rho), & t \geq 2 \end{cases}$$

A complex contact form is defined up to a nonzero smooth function factor. If θ is purely imaginary on S, e.g. $\theta = \partial r$, then the *Levi form* of S is

$$\operatorname{Levi}_{\mathcal{S}}(L) = \theta([L,\overline{L}]).$$

Towers on real hypersurfaces

Let $S \subset \mathbb{C}^{n+1}$ be a smooth real hypersurface, θ a complex contact form.

 A complex 1-form ω defined on H¹⁰S is called E-dual of order t ∈ N≥2, where E ⊂ H¹⁰S is a complex subbundle, if it is θ-dual of a list of (t − 1) complex vector fields

$$L^{t-1},\ldots,L^1\in\Gamma(E)\cup\Gamma(\overline{E})).$$

A tower on S of multi-order (t₁,..., t_n) ∈ (N_{≥2} ∪ {∞})ⁿ is a nested sequence of complex subbundles

$$H^{10}S = E_0 \supset \ldots \supset E_m, \quad 0 \le m \le n,$$

such that $t_{m+1} = \ldots = t_n = \infty$, and for each $k = 1, \ldots, m$, one has $t_k \in \mathbb{N}_{\geq 2}$ and there exists an E_{k-1} -dual form ω_k of order t_k with

$$E_k = E_{k-1} \cap \{\omega_k = 0\}, \quad \omega_k|_{E_{k-1}} \neq 0.$$

Functions associated with towers

• The θ -dual form of the list of $t \ge 2$ vector fields $L^t, \ldots, L^1 \in \Gamma(H^{10}S) \cup \Gamma(\overline{H^{10}S}))$ can be written as

 $\omega_{L^t,\ldots,L^1;\theta}(L_p) := Lf_{L^t,\ldots,L^1;\theta}(p), \quad f_{L^t,\ldots,L^1;\theta} := \mathsf{Re}(L^t \cdots L^3 \theta([L^2, L^1])),$

where we call $f_{L^t,...,L^1;\theta}$ the θ -dual function of $(L^t,...,L^1)$. Solution of For any tower

$$H^{10} = E_0 \supset \ldots \supset E_m, \quad 0 \le m \le n, \quad E_k = E_{k-1} \cap \{\omega_k = 0\},$$

and any choice of vector fields (L_k^s) with $\omega_k = \omega_{L_k^{t_k-1},...,L_k^1;\theta}$, collect all θ -dual functions for all k with $t_k \ge 2$ into the set

$$\{f_{L_k^{t_k-1},...,L_k^1;\theta}:t_k\geq 2\}$$

that we call an associated set of functions of the given tower.

< □ > < □ > < □ > □ =

First structure property

Proposition (used to obtain convexity properties of stratifications)

Let $S \subset \mathbb{C}^{n+1}$ be a smooth real hypersurface and

 $H^{10}S = E_0 \supset \ldots \supset E_m,$

a tower of the multi-order (t_1, \ldots, t_n) on S with an *associated set of* functions $\{f_1, \ldots, f_l\}$ $(l \le m)$. Then the following hold:

• The restrictions to $H^{10}S$ of the differentials df_1, \ldots, df_l are linearly independent, in particular, the zero set

$$M:=\{f_1=\ldots=f_l=0\}\subset S$$

is a smooth CR submanifold.

② The kernel (nullspace) distribution (of varying rank) K¹⁰ ⊂ H¹⁰S of the Levi form of S satisfies

$$H^{10}M\cap K^{10}\subset E_m.$$

It follows from the definition of a tower that the forms ω₁,..., ω_m defined there are linearly independent when restricted to H¹⁰S. If the set {f₁,..., f_l} is empty, (1) is void. Otherwise, the equality of the sets of the forms

$$\{\omega_k : t_k \ge 2\} = \{df_j|_{H^{10}S} : 1 \le j \le l\}$$

proves (1).

② To show (2), let $\xi \in K^{10}$. Since $\omega_k = \omega_{L_k;\theta} = \theta([\cdot, L_k])$ when $t_k = 1$, it follows that $\omega_k(\xi) = 0$. On the other hand, when $t_k \ge 2$, $\xi \in H^{10}M$ implies $\omega_k(\xi) = df_{I_k}(\xi) = 0$ for some $I_k \in \{1, ..., I\}$. Hence

$$\xi \in K^{10} \cap H^{10}M \implies \xi \in H^{10}S \cap \{\omega_1 = \ldots = \omega_m = 0\} = E_m$$

as desired.

Tower multitype: definition

The strata of S are obtained as level sets of the multitype function:

Definition

The tower multitype of S at $p \in S$ is the CR-invariant

$$\mathcal{T}(p) \in (\mathbb{N}_{\geq 2} \cup \{\infty\})^n$$

defined as the lexicographically minimum multi-order (t_1, \ldots, t_n) of a tower on a neighborhood of p in S.

Here the lexicographic order is defined in the standard way by

$$(t_1, \ldots, t_n) < (t'_1, \ldots, t'_n) \iff$$

 $\exists k \in \{1, \ldots, n-1\}, (t_1, \ldots, t_{k-1}) = (t'_1, \ldots, t'_{k-1}), t_k < t'_k.$

Taking the lexicographic order in (3) guarantees that $\mathcal{T}(p)$ is an invariant only depending on the CR structure of S (in fact, only on the Levi form).

Tower multitype: independence of the contact form

Recall: θ -dual forms $\omega_{L^t,...,L^1;\theta}$ are defined by

$$\begin{cases} \omega_{L^1;\theta}(\boldsymbol{L}_p) := \theta([\boldsymbol{L}, L^1])(p) & t = 1\\ \omega_{L^t,\dots,L^1;\theta}(\boldsymbol{L}_p) := \boldsymbol{L} \operatorname{Re}(L^t \cdots L^3 \theta([L^2, L^1]))(p), & t \ge 2 \end{cases}$$

Independence of $\boldsymbol{\theta}$

Any other complex contact form satisfies $\tilde{\theta} = h\theta$, where h is a nonzero smooth complex function. Then

$$\omega_{L_k^{t_k-1},\ldots,L_k^1;h\theta} = \omega_{L_k^{t_k-1},\ldots,hL_k^1;\theta}$$

and with $\tilde{\theta}$ instead of θ , we can modify the vector fields (L_k^s) to obtain the same forms ω_k defining the same tower.

Second structure property

Level sets of ${\mathcal T}$ serve as generalized strata, whose properties follow from

Proposition (used for local inclusion of strata into submanifolds)

Let $S \subset \mathbb{C}^{n+1}$ be a smooth real hypersurface, $p \in S$ a point, $U \subset S$ an open neighborhood of p, and

$$H^{10}U = E_0 \supset \ldots \supset E_m$$

a tower on U, whose multi-order equals the multitype $\mathcal{T}(p)$. Choose any associated set of functions

$$\{f_1,\ldots,f_l\}.$$

Then the following hold:

• $\mathcal{T}(p') \leq \mathcal{T}(p)$ for any $p' \in U$ (with respect to lexicographic order);

Ithe tower multitype level set satisfies

$$\{p'\in U: \mathcal{T}(p')=\mathcal{T}(p)\}\subset \{f_1=\ldots=f_l=0\}.$$

Proof of the second structure property

Since $\mathcal{T}(p) = (t_1, \ldots, t_n)$ is the multi-order of the given tower on U and $\mathcal{T}(p')$ is the minimum multi-order for a tower on a neighborhood of p', (1) is immediate.

To show (2), choose $p' \in U$ with $f_j(p') \neq 0$ for some j = 1, ..., l, where $f_j(p') = \operatorname{Re}(L_k^{t_k-1} \cdots L_k^3 \theta([L_k^2, L_k^1]))(p') \neq 0$, $L_k^{t_k-1}, \cdots, L_k^1 \in E_{k-1} \cup \overline{E}_{k-1}$ for some k that we choose to be *minimal with this property* for any j. If $L_k^{t_k-1} \in \overline{E}_{k-1}$, taking conjugates of all vector fields and of θ and replacing θ with $f\theta$, where f is a nonzero function, we may assume that $L_k^{t_k-1} \in E_{k-1}$. In particular, we obtain

$$\omega_k'|_{(E_{k-1})_{p'}}\neq 0,$$

where for $x \in S$, $L \in \Gamma(H^{10}S)$,

$$\omega_k'(L_x) := \theta([L, L_k^1)(x) \text{ for } t_k = 3,$$

or

$$\omega_k'(L_x) := LL_k^{t_k-2} \cdots L_k^3 \theta([L_k^2, L_k^1]))(x) \text{ for } t_k > 3$$

Proof of the second structure property, part (2), continued

In the case $t_k = 3$, we have $\omega'_k = \omega_{L^1_k;\theta}$. In the case $t_k > 3$, splitting into real and imaginary parts, we obtain

$$\omega_k'(L_{p'}) = L(\operatorname{Re} f + i \operatorname{Im} f)(p'), \quad f := L_k^{t_k-2} \cdots L_k^3 \theta([L_k^2, L_k^1])).$$

Taking the term that does not identically vanish for $L_{p'} \in (E_{k-1})_{p'}$ and multiplying $L_k^{t_k-2}$ by *i* if necessary, we may assume $\omega'_k(L_x) = L \operatorname{Re} f(x)$, hence $\omega'_k = \omega_{L_k^{t_k-2},...,L_k^1;\theta}$. In both cases, we obtain a *new tower*

$$H^{10}U' = E_0 \supset \ldots \supset E_{k-1} \supset E'_k$$

in a neighborhood $U' \subset U$ of p' of the *lexicographically smaller multi-order*

$$(t_1,\ldots,t_{k-1},t_k-1,\infty,\ldots,\infty) < (t_1,\ldots,t_{k-1},t_k,\ldots,t_n)$$

by setting

$$E'_k:=E_{k-1}\cap\{\omega'_k=0\}.$$

By definition of the tower multitype, $\mathcal{T}(p')$ is the minimum multi-order for a tower in its neighborhood, hence $\mathcal{T}(p') < \mathcal{T}(p)$ and thus p' is not in the level set of p, completing the proof of (2).

Consequences of the second structure property

Since the tower multitype only takes discrete values

 $\mathcal{T}(p) \in (\mathbb{N}_{\geq 2} \cup \{\infty\})^n, \quad p \in S,$

part (1) of the second structure property immediately yields:

Corollary

For a smooth real hypersurface $S \subset \mathbb{C}^{n+1}$, the following hold:

- **1** The tower multitype function \mathcal{T} is upper-semicontinuous.
- 2 Level sets of T are locally closed, i.e. closed in their open neighborhoods.

Recall:

Our goal is to obtain a generalized stratification with convexity propreties using level sets of ${\cal T}$ as strata:

$$S = \bigcup_{(t_1,\ldots,t_n)\in (\mathbb{N}_{\geq 2}\cup\{\infty\})^n} \{p: \mathcal{T}(p) = (t_1,\ldots,t_n)\}.$$

Hypersurfaces of finite tower multitype

For simplicity, we shall consider the case q = 1.

Theorem (generalized stratification for finite tower multitype)

Let $S \subset \mathbb{C}^{n+1}$ be a (not necessarily pseudoconvex) smooth hypersurface whose tower multitype has all entries finite at every point. Then S is countably 1-regular, where the "strata" can be chosen to be the level sets of the tower multitype function \mathcal{T} .

Recall:

A hypersurface $S \subset \mathbb{C}^{n+1}$ is countably 1-regular if it is a countable disjoint union $S = \bigcup_{k=1}^{\infty} S_k$ of locally closed subsets $S_k \subset S$ ("strata") such that for each k and $p \in S_k$, there exists a CR submanifold $M \subset S$ satisfying the following properties:

- M contains an open neighborhood of p in S_k (in relative topology);
- **2** $H_x^{10}M \cap K_x^{10} = \{0\}$ for all $x \in M$, where $K_x^{10} \subset H_x^{10}S$ is the *kernel of the Levi form* of S.

Proof of countable 1-regularity for finite tower multitype

Since the tower multitype of S is finite at every point, S splits into the countable disjoint union of the T-level sets

$$S = \bigcup_{(t_1,\ldots,t_n)\in\mathbb{N}_{\geq 2}^n} \{p:\mathcal{T}(p) = (t_1,\ldots,t_n)\}.$$

By the above corollary, each level set of ${\cal T}$ is locally closed, and by the second structure property, it is locally contained in the zero set

$$M=\{f_1=\ldots=f_l=0\},$$

where $\{f_1, \ldots, f_l\}$ is an *associated set of functions* of a tower

$$H^{10}S = E_0 \supset \ldots \supset E_m$$

on an open subset of S.

Since all entries of T are finite, E_m is the zero subbundle. Then by the first structure property, M is a CR submanifold of S satisfying

$$H^{10}M\cap K^{10}\subset E_m=0,$$

which is precisely the desired convexity property. $\langle \Box \rangle \langle \Box \rangle \langle$

Hypersurfaces with subbundles of finite Levi type

We have shown the implication

 ${\rm finite \ tower \ multitype \ \implies \ countable \ 1-regularity},$

from which known results imply *compactness* and *global regularity*. A simpler assumption going back to Kohn's 1972 JDG paper, is based on

Definition

The Levi type $c(E,p) \in \mathbb{N}_{\geq 2} \cup \{\infty\}$ at $p \in S$ of a subbundle $E \subset H^{10}S$ is

 $\min\{t \geq 2: \exists L^t, \ldots, L^1 \in \Gamma(E) \cup \Gamma(\overline{E}), L^m \cdots L^3 \partial r([L^2, L^1])(p) \neq 0\},\$

where r is a local defining function of S.

Corollary

For a (not necessarily pseudoconvex) smooth hypersurface $S \subset \mathbb{C}^{n+1}$, assume $c(E, p) < \infty$ for any smooth subbundle $E \subset H^{10}S$ of rank 1 and any $p \in S$. Then S is countably 1-regular.

Proof of the corollary

It suffices to reduce to the case of *finite tower multitype* treated above. Assume by contradiction that for some for some $p \in S$, $\mathcal{T}(p)$ is not finite, i.e. *some of the entries are infinite*. By definition, the tower multitype at p is realized as the multi-order of a tower in a neighborhood U of p

$$H^{10}U=E_0\supset\ldots\supset E_m.$$

Since not all entries finite, $E_m \neq \{0\}$.

We claim that $c(E, p) = \infty$, which will contradict our assumption, hence completing the proof. Indeed, otherwise

 $L^t \cdots L^3 \theta([L^2, L^1])(p) \neq 0$

for some $t \ge 2$ and some choice of vector fields $L^t, \ldots, L^1 \in E_m \cup \overline{E}_m$. Then, by repeating the arguments of the proof of the second structure property, we reach a contradiction with the tower multitype definition constructing another tower on a neighborhood of p in S of a lexicographically smaller multi-order

$$(t_1,\ldots,t_m,t_{m+1},\ldots,t_n) < (t_1,\ldots,t_m,\infty,\max), \ldots,\infty) \in \mathbb{R}^{n}$$

Special subbundles

Our argument yields in fact a stronger more refined version of the above corollary, where the *Levi type* finiteness $c(E, p) < \infty$ only needs to be checked for certain *special subbundles* E that always arise in a tower:

Definition (special subbundle)

A complex subbundle $E \subset H^{10}S$ is called special if it can be defined by

$$E = \{\xi \in H^{10}S : \omega_1(\xi) = \ldots = \omega_l(\xi) = 0\}, \quad \omega_1 \wedge \cdots \wedge \omega_l \neq 0 \text{ on } (H^{10}S)^l,$$

where each ω_j , j = 1, ..., l, is the θ -dual 1-form $\omega_j = \omega_{L_i^{t_j},...,L_i^1}$ for some

$$t_j \geq 1$$
 and vector fields $L_j^{t_j}, \ldots, L_j^1 \in \Gamma(H^{10}S) \cup \Gamma(\overline{H^{10}S})$.

Theorem (finite Levi type only for special subbundles)

Assume $c(E, p) < \infty$ for any special subbundle $E \subset H^{10}S$ of rank ≥ 1 . Then S is of finite tower multitype at p.

Note that $c(E,p) < \infty$ implies $c(E',p) < \infty$ for any subbundle $E' \subset E$.