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Notation: local defining functions

1 smooth means always C∞;

2 S ⊂ Cn+1, n ≥ 1, (or S ⊂ Cn, n ≥ 2) is a smooth real hypersurface;

3 a local defining function r of S in a neighborhood U of p ∈ S is any
smooth real function with

S ∩ U = {r = 0}

and dr ̸= 0 at every point of U;

4 any two local defining functions r1, r2 in U differ by a nonzero smooth
function factor:

r2(x) = a(x)r1(x), a(x) ̸= 0.
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Notation: tangent bundles

1 TS is the real tangent bundle;

2 CTS = C⊗R TS is the complexified tangent bundle;

3 H10S = {X ∈ CTS : ∂r(X ) = 0} is the (1, 0) bundle;

4 H01S = {X ∈ CTS : ∂̄r(X ) = 0} is the (0, 1) bundle;

5 HS = ReH10S = ReH01S ⊂ TS is the complex tangent bundle;

6 We have the standard relations:

H01S = H10S , CHS = H10S ⊕ H10S .
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Motivation: from finiteness conditions to global regularity

finiteness conditions generalized stratification

condition R property (Pq)

global regularity compactness

Examples of finiteness conditions and relations between them:

finite D’Angelo type finite regular type

finite tower multitype

Here we shall focus on the more general finite tower multitype condition
and the first implication shown in red.
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Generalized stratifications with convexity properties

The goal in the first implication is to obtain generalized stratifications of
the hypersurface S with certain convexity properties:

Definition (generalizing regular domains by Catlin-Diederich-Fornaess)

A hypersurface S ⊂ Cn+1 is countably q-regular (1 ≤ q ≤ n) if it is a
countable disjoint union S = ∪∞

k=1Sk of locally closed subsets Sk ⊂ S
(“strata”) such that for each k and p ∈ Sk , there exists a CR submanifold
M ⊂ S satisfying the following properties:

1 M contains an open neighborhood of p in Sk (in relative topology);

2 dimC(H
10
x M ∩ K 10

x ) < q for all x ∈ M, where K 10
x ⊂ H10

x S is the
kernel of the Levi form of S .

When q = 1 and S is pseudoconvex, condition (2) simply means that the
Levi form of S is positive definite along H10M. This allows constructions
of bounded local weight functions aka barriers aka bumps with large
complex hessians on strata Sk as C (r +

∑
j r

2
j ), where r (resp. rj) are

local defining functions of S (resp. M).
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Bounded barriers with large complex hessians (BBLH)

The complex hessian of a real function λ is the hermitian quadratic form

Hλ(X ) :=
∑

λzj z̄kXjX k .

By definition, property (P1) ⇐⇒ the existence of BBLH on a set A
means the existence of functions λ with 0 ≤ λ ≤ 1 in a neighborhood of A
with arbitrarily large complex hessian (the neighborhood of A depends on
how large is the hessian).

Sibony’s B-regularity theory

Local existence of BBLH for strata Sk implies global existence of BBLH
for their countable unions.

Vast applications of BBLH — passing from flexible to rigid objects:
1 a priori estimates for ∂̄ leading to compactness and global regularity

by Kohn-Nirenberg;
2 regularity of the Bergman projection aka condition R by Bell-Ligocka

implying boundary smoothness of proper holomorphic maps;
3 estimates for reproducing kernels and invariant metrics.
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Back to our tools: Forms dual to lists of vector fields

Definition
1 A complex contact form θ on S is any nonzero C-valued 1-form

vanishing on CHS = H10S ⊕ H10S ⊂ CTS .
2 The θ-dual form of an (ordered) list of complex vector fields

Lt , . . . , L1 ∈ Γ(H10S) ∪ Γ(H10S)), t ≥ 1,

is the complex 1-form ωLt ,...,L1;θ on H10S defined for L ∈ Γ(H10S),
p ∈ S , by{

ωL1;θ(Lp) := θ([L, L1])(p) t = 1

ωLt ,...,L1;θ(Lp) := LRe(Lt · · · L3θ([L2, L1]))(p), t ≥ 2
.

A complex contact form is defined up to a nonzero smooth function factor.
If θ is purely imaginary on S , e.g. θ = ∂r , then the Levi form of S is

LeviS(L) = θ([L, L]).
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Towers on real hypersurfaces

Let S ⊂ Cn+1 be a smooth real hypersurface, θ a complex contact form.

1 A complex 1-form ω defined on H10S is called E -dual of order
t ∈ N≥2, where E ⊂ H10S is a complex subbundle, if it is θ-dual of a
list of (t − 1) complex vector fields

Lt−1, . . . , L1 ∈ Γ(E ) ∪ Γ(E )).

2 A tower on S of multi-order (t1, . . . , tn) ∈ (N≥2 ∪ {∞})n is a nested
sequence of complex subbundles

H10S = E0 ⊃ . . . ⊃ Em, 0 ≤ m ≤ n,

such that tm+1 = . . . = tn = ∞, and for each k = 1, . . . ,m, one has
tk ∈ N≥2 and there exists an Ek−1-dual form ωk of order tk with

Ek = Ek−1 ∩ {ωk = 0}, ωk |Ek−1
̸= 0.
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Functions associated with towers

1 The θ-dual form of the list of t ≥ 2 vector fields
Lt , . . . , L1 ∈ Γ(H10S) ∪ Γ(H10S)) can be written as

ωLt ,...,L1;θ(Lp) := LfLt ,...,L1;θ(p), fLt ,...,L1;θ := Re(Lt · · · L3θ([L2, L1])),

where we call fLt ,...,L1;θ the θ-dual function of (Lt , . . . , L1).

2 For any tower

H10 = E0 ⊃ . . . ⊃ Em, 0 ≤ m ≤ n, Ek = Ek−1 ∩ {ωk = 0},

and any choice of vector fields (Lsk) with ωk = ω
L
tk−1

k ,...,L1k ;θ
, collect all

θ-dual functions for all k with tk ≥ 2 into the set

{f
L
tk−1

k ,...,L1k ;θ
: tk ≥ 2}

that we call an associated set of functions of the given tower.
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First structure property

Proposition (used to obtain convexity properties of stratifications)

Let S ⊂ Cn+1 be a smooth real hypersurface and

H10S = E0 ⊃ . . . ⊃ Em,

a tower of the multi-order (t1, . . . , tn) on S with an associated set of
functions {f1, . . . , fl} (l ≤ m). Then the following hold:

1 The restrictions to H10S of the differentials df1, . . . , dfl are linearly
independent, in particular, the zero set

M := {f1 = . . . = fl = 0} ⊂ S

is a smooth CR submanifold.

2 The kernel (nullspace) distribution (of varying rank) K 10 ⊂ H10S of
the Levi form of S satisfies

H10M ∩ K 10 ⊂ Em.
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Proof of the first structure property

1 It follows from the definition of a tower that the forms ω1, . . . , ωm

defined there are linearly independent when restricted to H10S . If the
set {f1, . . . , fl} is empty, (1) is void. Otherwise, the equality of the
sets of the forms

{ωk : tk ≥ 2} = {dfj |H10S : 1 ≤ j ≤ l}

proves (1).

2 To show (2), let ξ ∈ K 10. Since ωk = ωLk ;θ = θ([·, Lk ]) when tk = 1,
it follows that ωk(ξ) = 0. On the other hand, when tk ≥ 2, ξ ∈ H10M
implies ωk(ξ) = dflk (ξ) = 0 for some lk ∈ {1, . . . , l}. Hence

ξ ∈ K 10 ∩ H10M =⇒ ξ ∈ H10S ∩ {ω1 = . . . = ωm = 0} = Em

as desired.
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Tower multitype: definition

The strata of S are obtained as level sets of the multitype function:

Definition

The tower multitype of S at p ∈ S is the CR-invariant

T (p) ∈ (N≥2 ∪ {∞})n

defined as the lexicographically minimum multi-order (t1, . . . , tn) of a
tower on a neighborhood of p in S .

Here the lexicographic order is defined in the standard way by

(t1, . . . , tn) < (t ′1, . . . , t
′
n) ⇐⇒

∃ k ∈ {1, . . . , n − 1}, (t1, . . . , tk−1) = (t ′1, . . . , t
′
k−1), tk < t ′k .

Taking the lexicographic order in (3) guarantees that T (p) is an invariant
only depending on the CR structure of S (in fact, only on the Levi form).
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Tower multitype: independence of the contact form

Recall: θ-dual forms ωLt ,...,L1;θ are defined by{
ωL1;θ(Lp) := θ([L, L1])(p) t = 1

ωLt ,...,L1;θ(Lp) := LRe(Lt · · · L3θ([L2, L1]))(p), t ≥ 2
.

Independence of θ

Any other complex contact form satisfies θ̃ = hθ, where h is a nonzero
smooth complex function. Then

ω
L
tk−1

k ,...,L1k ;hθ
= ω

L
tk−1

k ,...,hL1k ;θ

and with θ̃ instead of θ, we can modify the vector fields (Lsk) to obtain the
same forms ωk defining the same tower.
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Second structure property

Level sets of T serve as generalized strata, whose properties follow from

Proposition (used for local inclusion of strata into submanifolds)

Let S ⊂ Cn+1 be a smooth real hypersurface, p ∈ S a point, U ⊂ S an
open neighborhood of p, and

H10U = E0 ⊃ . . . ⊃ Em

a tower on U, whose multi-order equals the multitype T (p). Choose any
associated set of functions

{f1, . . . , fl}.

Then the following hold:

1 T (p′) ≤ T (p) for any p′ ∈ U (with respect to lexicographic order);

2 the tower multitype level set satisfies

{p′ ∈ U : T (p′) = T (p)} ⊂ {f1 = . . . = fl = 0}.
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Proof of the second structure property

Since T (p) = (t1, . . . , tn) is the multi-order of the given tower on U and
T (p′) is the minimum multi-order for a tower on a neighborhood of p′, (1)
is immediate.
To show (2), choose p′ ∈ U with fj(p

′) ̸= 0 for some j = 1, . . . , l , where

fj(p
′) = Re(Ltk−1

k · · · L3kθ([L2k , L1k ]))(p′) ̸= 0, Ltk−1
k , · · · , L1k ∈ Ek−1∪E k−1

for some k that we choose to be minimal with this property for any j . If
Ltk−1
k ∈ E k−1, taking conjugates of all vector fields and of θ and replacing

θ with f θ, where f is a nonzero function, we may assume that
Ltk−1
k ∈ Ek−1. In particular, we obtain

ω′
k |(Ek−1)p′

̸= 0,

where for x ∈ S , L ∈ Γ(H10S),

ω′
k(Lx) := θ([L, L1k)(x) for tk = 3,

or
ω′
k(Lx) := LLtk−2

k · · · L3kθ([L2k , L1k ]))(x) for tk > 3.
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Proof of the second structure property, part (2), continued

In the case tk = 3, we have ω′
k = ωL1k ;θ

. In the case tk > 3, splitting into
real and imaginary parts, we obtain

ω′
k(Lp′) = L(Ref + i Imf )(p′), f := Ltk−2

k · · · L3kθ([L2k , L1k ])).
Taking the term that does not identically vanish for Lp′ ∈ (Ek−1)p′ and

multiplying Ltk−2
k by i if necessary, we may assume ω′

k(Lx) = LRef (x),
hence ω′

k = ω
L
tk−2

k ,...,L1k ;θ
. In both cases, we obtain a new tower

H10U ′ = E0 ⊃ . . . ⊃ Ek−1 ⊃ E ′
k

in a neighborhood U ′ ⊂ U of p′ of the lexicographically smaller multi-order

(t1, . . . , tk−1, tk − 1,∞, . . . ,∞) < (t1, . . . , tk−1, tk , . . . , tn),

by setting
E ′
k := Ek−1 ∩ {ω′

k = 0}.
By definition of the tower multitype, T (p′) is the minimum multi-order for
a tower in its neighborhood, hence T (p′) < T (p) and thus p′ is not in the
level set of p, completing the proof of (2).
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Consequences of the second structure property

Since the tower multitype only takes discrete values

T (p) ∈ (N≥2 ∪ {∞})n, p ∈ S ,

part (1) of the second structure property immediately yields:

Corollary

For a smooth real hypersurface S ⊂ Cn+1, the following hold:

1 The tower multitype function T is upper-semicontinuous.

2 Level sets of T are locally closed, i.e. closed in their open
neighborhoods.

Recall:

Our goal is to obtain a generalized stratification with convexity propreties
using level sets of T as strata:

S =
⋃

(t1,...,tn)∈(N≥2∪{∞})n
{p : T (p) = (t1, . . . , tn)}.
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Hypersurfaces of finite tower multitype

For simplicity, we shall consider the case q = 1.

Theorem (generalized stratification for finite tower multitype)

Let S ⊂ Cn+1 be a (not necessarily pseudoconvex) smooth hypersurface
whose tower multitype has all entries finite at every point. Then S is
countably 1-regular, where the “strata” can be chosen to be the level sets
of the tower multitype function T .

Recall:

A hypersurface S ⊂ Cn+1 is countably 1-regular if it is a countable disjoint
union S = ∪∞

k=1Sk of locally closed subsets Sk ⊂ S (“strata”) such that
for each k and p ∈ Sk , there exists a CR submanifold M ⊂ S satisfying the
following properties:

1 M contains an open neighborhood of p in Sk (in relative topology);

2 H10
x M ∩ K 10

x = {0} for all x ∈ M, where K 10
x ⊂ H10

x S is the kernel of
the Levi form of S .
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Proof of countable 1-regularity for finite tower multitype

Since the tower multitype of S is finite at every point, S splits into the
countable disjoint union of the T -level sets

S =
⋃

(t1,...,tn)∈Nn
≥2

{p : T (p) = (t1, . . . , tn)}.

By the above corollary, each level set of T is locally closed, and by the
second structure property, it is locally contained in the zero set

M = {f1 = . . . = fl = 0},
where {f1, . . . , fl} is an associated set of functions of a tower

H10S = E0 ⊃ . . . ⊃ Em

on an open subset of S .
Since all entries of T are finite, Em is the zero subbundle. Then by the
first structure property, M is a CR submanifold of S satisfying

H10M ∩ K 10 ⊂ Em = 0,

which is precisely the desired convexity property.
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Hypersurfaces with subbundles of finite Levi type

We have shown the implication

finite tower multitype =⇒ countable 1-regularity,

from which known results imply compactness and global regularity. A
simpler assumption going back to Kohn’s 1972 JDG paper, is based on

Definition

The Levi type c(E , p) ∈ N≥2 ∪ {∞} at p ∈ S of a subbundle E ⊂ H10S is

min{t ≥ 2 : ∃Lt , . . . , L1 ∈ Γ(E ) ∪ Γ(E ), Lm · · · L3∂r([L2, L1])(p) ̸= 0},

where r is a local defining function of S .

Corollary

For a (not necessarily pseudoconvex) smooth hypersurface S ⊂ Cn+1,
assume c(E , p) < ∞ for any smooth subbundle E ⊂ H10S of rank 1 and
any p ∈ S . Then S is countably 1-regular.

Dmitri Zaitsev (Trinity College Dublin) New tools and conditions for global regularity of the ∂̄-Neumann operator 20 / 22



Proof of the corollary

It suffices to reduce to the case of finite tower multitype treated above.
Assume by contradiction that for some for some p ∈ S , T (p) is not finite,
i.e. some of the entries are infinite. By definition, the tower multitype at p
is realized as the multi-order of a tower in a neighborhood U of p

H10U = E0 ⊃ . . . ⊃ Em.

Since not all entries finite, Em ̸= {0}.
We claim that c(E , p) = ∞, which will contradict our assumption, hence
completing the proof. Indeed, otherwise

Lt · · · L3θ([L2, L1])(p) ̸= 0

for some t ≥ 2 and some choice of vector fields Lt , . . . , L1 ∈ Em ∪ Em.
Then, by repeating the arguments of the proof of the second structure
property, we reach a contradiction with the tower multitype definition
constructing another tower on a neighborhood of p in S of a
lexicographically smaller multi-order

(t1, . . . , tm, tm+1, . . . , tn) < (t1, . . . , tm,∞, . . . ,∞).
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Special subbundles

Our argument yields in fact a stronger more refined version of the above
corollary, where the Levi type finiteness c(E , p) < ∞ only needs to be
checked for certain special subbundles E that always arise in a tower:

Definition (special subbundle)

A complex subbundle E ⊂ H10S is called special if it can be defined by

E = {ξ ∈ H10S : ω1(ξ) = . . . = ωl(ξ) = 0}, ω1∧· · ·∧ωl ̸= 0 on (H10S)l ,

where each ωj , j = 1, . . . , l , is the θ-dual 1-form ωj = ω
L
tj
j ,...,L

1
j

for some

tj ≥ 1 and vector fields L
tj
j , . . . , L

1
j ∈ Γ(H10S) ∪ Γ(H10S)).

Theorem (finite Levi type only for special subbundles)

Assume c(E , p) < ∞ for any special subbundle E ⊂ H10S of rank ≥ 1.
Then S is of finite tower multitype at p.

Note that c(E , p) < ∞ implies c(E ′, p) < ∞ for any subbundle E ′ ⊂ E .
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