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Chapter 3: LCA groups and their duals
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3.1 LCA groups
In this section we give a definition of a class of locally compact abelian groups G for which

(a) the examples discussed in Chapter 1 of G = T, G = Z, G = R and G finite all satisfy the
definition

(b) the Fourier theory works nicely in the form of the Fourier transform.

We want the dual group Ĝ to still belong in the class in a natural way. For this we need to
define an appropriate metrizable topology on Ĝ.

In the examples of groups G from Chapter 1, we defined in each case the Fourier transform
of F : G → C as a function F̂ : Ĝ → C, where F̂ is defined either as an integral or a sum. (In
the case of G = Z, we did not actually give the definition.) In the case G = T and Ĝ = Z we
discussed in Chapter 2 results concerning recovering F from F̂ (as the Fourier series, which is a
sum over Ĝ = Z).

Sums may be viewed as integrals with respect to counting measure and in the general case
we need a good measure on G in order to define the Fourier transform. We need a similarly good
measure on Ĝ in order to come up with a version of the Fourier series. It will be replaced in
general by an integral over χ ∈ Ĝ of F̂ (χ)χ. The concept of a “good measure” we want is called
Haar measure on the group.

We repeat some definitions from Chapter 1 for ease of reference.

3.1.1 Definition (Definition 1.3.3). A metric space (X, d) is called locally compact if for each
point x0 ∈ X there is some r > 0 (depending on x0) such that the closed ball B̄(x0, r) is
compact.

We also use the term locally compact for metrizable spaces.

3.1.2 Definition (Definition 1.3.5). By a topological group we will mean a group G which is
also a metrizable space where multiplication and inversion are continuous.

In more detail, we suppose d is a metric on G that gives rise to the topology, and then we
defined a metric on G × G by ρ((g1, g2), (h1, h2)) = d(g1, h1) + d(g2, h2). Then G × G is a
metrizable space. We insist then that the maps
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2 Chapter 3: LCA groups and their duals

(TG1) multiplication : G×G→ G ((g, h) 7→ gh)

(TG2) inversion : G→ G (g 7→ g−1)

are each continuous.

3.1.3 Definition (Base of a topological space). IfX is a topological space (or a metrizable space),
then a subfamily B of the open sets is called a base (for the open sets) of the topology if

x ∈ U ⊆ X , U open⇒ ∃B ∈ B with x ∈ B ⊂ U

3.1.4 Definition (second countable space). A topological space (or metrizable space)X is called
second countable if there exists a base B for the topology where B is a countable collection of
sets.

3.1.5 Example. X = RN is second countable (any N ∈ N)

Proof. Consider B = {B(q, 1/n) : q ∈ QN , n ∈ N}. This is countable, consists of open sets
(open balls in fact) and we now show it is a base.

We take balls in the usual Euclidean metric d.
If x ∈ U ⊆ RN with U open, then there is r > 0 with B(x, r) ⊆ U . Choose n ∈ N

with 1/n < r/2. Choose q ∈ QN with d(x, q) < 1/n. Then x ∈ B(q, 1/n) ⊂ B(x, 2/n) ⊂
B(x, r) ⊆ U .

If Y ⊂ RN is any subset, then Y is also second countable (with the usual topology arising
from (the restriction to Y of) d).

Proof. With B a countable base for RN (for instance as above), {B ∩ Y : B ∈ B} is a counatble
base for Y .

In particular Z and T are second countable.

3.1.6 Lemma. If X is a locally compact and second countable metrizable space, then there is a
countable base B for the topology such that each set B ∈ B has compact closure.

Proof. Let B0 be a countable base for X . Let d be a metric on X that gives the topology. For
each x ∈ X , there is a radius rx > 0 such that the closed ball B̄(x, rx) is compact. Since x is a
point in the open ball B(x, rx), there is Bx ∈ B0 with x ∈ Bx ⊆ B(x, rx). Such a Bx has closure
in the closed ball B̄(x, rx) and so is compact.

In fact, if 0 < r < rx, using x ∈ B(x, r) open, there is Bx,r ∈ B0 with x ∈ Bx,r ⊆ B(x, r)
and such a Bx,r also has compact closure.

If we take B = {B ∈ B0 : B̄ is compact}, then B is countable and is a base for X because
if we have x ∈ U open, then there is r ≤ rx with B(x, r) ⊆ U and so x ∈ Bx,r ⊆ U (and
Bx,r ∈ B).

3.1.7 Lemma. If X is a second countable locally compact metrizable space then there is a
sequence (Kn)∞n=1 of compact subsets of X with the following properties:
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(Ex1) Kn ⊆ K◦n+1 for n = 1, 2, . . .;

(Ex2) If K ⊆ X is compact , then there is n with K ⊆ Kn;

(Ex3)
⋃∞
n=1Kn = X .

(We refer to such a sequence (Kn)∞n=1 as an exhaustion of X by compact sets.)

Proof. By Lemma 3.1.6, we know that X has a countable base B = {B1, B2, . . .} such that each
Bn is compact.

Then
⋃∞
n=1Bn = X because if x ∈ X , then there must be a basic open set Bn with x ∈

Bn ⊆ X .
Let K1 = B1.
Since K1 is compact and contained in

⋃∞
n=1Bn (that is the sets Bn form an open cover of

K1) there is some finite n1 with K1 ⊆
⋃n1

n=1Bn. We suppose that n1 ≥ 2. Take K2 =
⋃n1

n=1Bn.
Then K2 is compact since it is a finite union of compact sets. We have

K1 ⊆
n1⋃
n=1

Bn ⊆ K2

and that finite union is open. So K1 ⊆ K◦2 .
We proceed inductively. That is, if we already have Kr, find nr ≥ r + 1 such that

Kr ⊆
nr⋃
n=1

Bn

Put

Kr+1 =
nr⋃
n=1

Bn

If K ⊆ X is compact, then there is r with K ⊆
⋃r
n=1Bn. Then K ⊆ Kr since nr > r.

Also X =
⋃∞
n=1Bn ⊆

⋃∞
r=1Kr because Bn ⊆ Kn.

This shows that the sequence (Kr)
∞
r=1 is an exhaustion.

3.1.8 Example. The groups G we saw in Chapter 1 are all second countable and locally compact
metrizable spaces and so have an exhaustion by the above. But in each case, we can easily write
one down:

G = T: put Kn = T for all n
G = R: put Kn = [−n, n]
G = Z: put Kn = {−n,−(n− 1), . . . , n− 1, n}
G finite abelian: put Kn = G for all n

3.1.9 Definition. An LCA group is an abelian topological group that is locally compact and
second countable.

We recall now from Chapter 1:
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3.1.10 Definition (Characters, Definition 1.3.7). If G is a an abelian topological group, then a
character of G is a continuous group homomorphism χ : G→ T.

3.1.11 Definition (Dual group). If G is an abelian topological group, we define Ĝ to be the set
of all characters χ : G→ T and introduce a multiplication rule for characters χ1, χ1 by

(χ1χ2)(g) = χ1(g)χ2(g)

3.1.12 Notation. LetG be an LCA group and let (Kn)∞n=1 be a fixed exhaustion ofX by compact
sets.

We define dn : Ĝ× Ĝ→ [0,∞) by

dn(χ1, χ2) = sup
g∈Kn

|χ1(g)− χ2(g)|

(Note that 0 ≤ dn(χ1, χ2) ≤ 2 because χ1(g), χ2(g) ∈ T.)

3.1.13 Lemma. We can define a metric d : Ĝ× Ĝ→ [0,∞) by

d(χ1, χ2) =
∞∑
n=1

1

2n
dn(χ1, χ2)

Proof. We will not give this proof, but is is quite straightforward. The functions dn may not be
metrics because dn(χ1, χ2) = 0 may not imply χ1 = χ2, but dn obeys the other properties for a
metric.

3.1.14 Lemma. If (χn)∞n=1 is a sequence in Ĝ = and χ ∈ Ĝ, then

lim
n→∞

χn = χ in the metric space (G, d)

if and only if
lim
n→∞

sup
g∈K
|χn(g)− χ(g)| = 0

holds for each compact K ⊆ G.
(That is convergence of sequences in the metric d is equivalent to uniform convergence on

(all) compact subsets of G.)

Proof. Again, this is not very complicated but we will not give the details.

3.1.15 Corollary. The topology on Ĝ given by the metric d does not depend on the choice of the
fixed exhaustion of X by compact sets, that is it does not depend on (Kn)∞n=1 (though the metric
d does depend on that choice).

Proof. This is immediate from Lemma 3.1.14

Recall (Proposition 1.3.10) that Ĝ is an abelian group (if G is a topological abelian group).
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3.1.16 Theorem. If G is an LCA group, then Ĝ with the topology arising from the metric d is
also an LCA group.

Proof. This requires quite a bit of proof. We refer to chapter 6 of A. Deitmar, A First Course in
Harmonic Analysis, Springer Universitext (2002), but skip it.

3.1.17 Theorem. (i) R̂ can be identified with R

(ii) Ẑ can be identified with T

(iii) T̂ can be identified with Z

(iv) If G is a finite abelian group (with the discrete topology), then also Ĝ is a finite abelian
group of the same order (also with the discrete topology).

Proof. The point here is that, in chapter 1, where we showed already that if G is one of these
groups, then Ĝ is as claimed as a group. We now assert the metric d gives the usual topology on
Ĝ. Again we will not prove it here.

3.1.18 Theorem (Pontryagin duality). If G is an LCA group, then every character of Ĝ is of the
form ĝ : Ĝ→ T given by

ĝ(χ) = χ(g)

for some g ∈ G.

The map g 7→ ĝ from G to ˆ̂
G is a homeomorphism.

(This is usually summarized as ˆ̂
G = G.)

Again we do not prove this.

3.2 Haar measure
3.2.1 Definition. If G is an LCA group, then the Borel σ-algebra on G is the smallest σ-algebra
ΣBorel of subsets of G such that every open subset of G is in ΣBorel.

3.2.2 Definition. If G is an LCA group, then a Borel measure on G is a measure λ : ΣBorel →
[0,∞].

(That means λ(∅) = 0 and λ is countably additive — see Definition 2.A.1.3.)

3.2.3 Definition. A Borel measure λ on an LCA group G is called inner regular if λ(K) < ∞
whenever K ⊆ G is compact and if

λ(U) = sup{λ(K) : K ⊆ U and K compact}

holds whenever U ⊆ G is open.

3.2.4 Definition. A Borel measure λ on an LCA group G is called outer regular if

λ(E) = inf{λ(U) : U open and E ⊆ U}

holds for all E ∈ ΣBorel.
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3.2.5 Definition. A Borel measure λ on an LCA group G is called translation invariant if it
satisfies

λ(sE) = λ(E) for all E ∈ ΣBorel, s ∈ G

where sE = {sg : g ∈ E}. (Note: if the group operation is written + we should write s + E =
{s+ g : g ∈ E} instead.)

3.2.6 Definition. A Haar measure on an LCA group G is nonzero Borel measure λ on G which
is both inner and outer regular and also translation invariant.

3.2.7 Theorem. Every LCA group G has a Haar measure λG and every other Haar measure on
G is a positive multiple of λG. (In other words, λG is unique apart from rescaling.)

The proof is quite difficult. (Well, there is more than one proof, but none are very simple.)

3.2.8 Examples. (i) If G = R, Lebesgue length measure is a Haar measure on G.

(ii) If G = T, Lebesgue arc length measure is a Haar measure on G. We have been using
1/(2π) times that, that is normalizing λT so that λT(T) = 1.

Thus we take λT to be a probability measure.

If G is any compact LCA group, we can assume that λG(G) = 1 (and this is a common
normalization to use).

(iii) If G = Z, Haar measure λZ must give a positive weight to the one point set {0} because
translation invariance forces

λZ({n}) = λZ({0}+ n) = λZ({0})

and if λZ({0} = 0, then we would have

λZ(Z) = λZ

(⋃
n∈Z

({n}

)
=
∑
n∈Z

λZ({n}) = 0

We typically take λZ({0}) = 1 and then λZ is counting measure, λG(E) is the number of
elements in E for all E ⊆ Z.

This is a normalization that is commonly used when G has the discrete topology.

(iv) If G is a finite abelian group with N elements, then G is both compact and discrete. So
according to the last two examples there are two “obvious” normalizations to choose. One
is the make λG(G) be 1, and that would mean taking λG to be 1/N times counting measure.
The other would be to take counting measure.

In Chapter 1, we defined the Forurier transform using what amounts to 1/
√
N times count-

ing measure. We did the same on Ĝ and we got a nice formula for functions f : G→ C in
terms of f̂ (Corollary 1.4.13).
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3.3 Fourier transform
3.3.1 Definition. If G is an LCA group and λG is a Haar measure on G, then we define the
Fourier transform of a function F : G→ C to be the function F̂ : Ĝ→ C given by

F̂ (χ) =

∫
G

Fχ̄ dλG =

∫
g∈G

F (g)χ(g) dλG(g)

(However we need to assume that the integral makes sense first. We can most naturally
assume that F is integrable with respect to the measure λG, that is that F is Borel measurable
and that

∫
G
|F | dλG <∞. We write F ∈ L1(G) for this, though we should really say F ∈ L1(G)

and then define L1(G) as the space of λG-almost everywhere equivalence classes of functions in
L1(G).)

3.3.2 Lemma. If F : G → C is continuous and {g ∈ G : F (g) 6= 0} has compact closure K in
G, then F ∈ L1(G).

(We write Cc(G) for the F satisfying these conditions.)

Proof. Since F is continuous it must be Borel measurable.
Since K is compact and |F | is continuous on K, it has a largest value M (say) on K. So

|F (g)| ≤ MχK(g) holds for all g ∈ G (where we now use χK for the characteristic function of
K). Since λG is inner regular, λG(K) <∞ and∫

G

MχK(g) dλG(g) = MλG(K) <∞

So ∫
G

|F (g)| dλG(g) ≤
∫
G

MχK(g) dλG(g) <∞

and F ∈ L1(G).

3.3.3 Definition. L2(G) is the space of Borel measurableF : G→ C which are square-integrable,
that is satisfy ∫

G

|F |2 dλG =

∫
G

|F (g)|2 dλG(g) <∞

L2(G) is the space of λG-almost everywhere equivalence classes of functions F ∈ L2(G)
(where we say F and H are equivalent if λG({g ∈ G : F (g) 6= H(g)}) = 0).

3.3.4 Proposition. We can define a norm on L2(G) by

‖F‖2 =

(∫
G

|F |2 dλG
)1/2

and then L2(G) is a Banach space.
Moreover Cc(G) ⊂ L2(G) is a dense subspace.
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3.3.5 Theorem (Plancherel theorem). Let G be an LCA group and λG a chosen Haar measure
on G. Then is a choice of a Haar measure λĜ on Ĝ such that ‖F̂‖2 = ‖F‖G holds for all
F ∈ Cc(G).

With these choices the Fourier transform F 7→ F̂ extends to a surjective linear isometry from
L2(G) to L2(Ĝ).

Every F ∈ L2(G) can be recovered from F̂ ∈ L2(Ĝ). The inverse Fourier transform of
H ∈ L2(Ĝ) is defined for H ∈ Cc(Ĝ) by

Ȟ(g) =

∫
χ∈Ĝ

H(χ)χ(g) dλĜ(χ)

and this also extends to all H ∈ L2(Ĝ) in such a way that H 7→ Ȟ is a surjective linear isometry
L2(Ĝ)→ L2(G) with ‖Ȟ‖2 = ‖H‖2.

The fact that it is the inverse means ˇ̂
F = F for F ∈ L2(G).

The proof of this is not so easy, even for the case G = R and Ĝ = R. One bothersome issue
in the case of R (or groups where λG(G) = ∞) is that L2(G) is not contained in L1(G). So the
integral we used to define the Fourier transform does not make sense for general F ∈ L2(G) and
we have to work to come up with the right choice for F̂ .

In the case of compact groups like G = T, we do have L2(G) ⊂ L1(G) and that makes life
easier. But ifG = T, then Ĝ = Z is not compact and we have this issue for the inverse transform.

Unfortunately, we do not have time to deal with these issues and many results in this chapter
have not been proved at all. We also did not discuss applications of Fourier theory (such as in
PDEs, sound waves, image compression) or algorithms such as the Fast Fourier Transform (for
efficent computation of the Fourier transform on finite abelian groups, especially cyclic groups
of order 2n).

Nov 30: Fix typo in statement of Theorem 3.1.18. Apr 30: Fix typos in Definitions 3.2.3 and
3.2.4
Richard M. Timoney (April 30, 2018)
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