MAU34206 - Harmonic Analysis I 2020

Sheet 1

Duc, and the focult here weathered	Due:	after	the	lecture	next	Wednesday	V
------------------------------------	------	-------	-----	---------	------	-----------	---

Exercise 1

Compute Fourier coefficients $\widehat{f}(n)$ for the function $f(x), 0 \le x \le 1$, where:

- (i) $f(x) = \sin(2\pi x) 2\cos(10\pi x);$
- (ii) $f(x) = \cos(\pi x)$.

Exercise 2

For a > 0:

- (i) determine all characters on $G := \mathbb{R}/a\mathbb{Z}$;
- (ii) construct an inner product \langle,\rangle on C([0, a]) for which the characters form an orthonormal system;
- (iii) use the above inner product to compute the Fourier coefficients $\widehat{f}(\chi) = \langle f, \chi \rangle$.

Exercise 3

Let G be an abelian topological group and for $g \in G$ define the translation operator

$$T_g f(x) := f(gx)$$

acting on functions on G.

- (i) Find all functions $\chi: G \to \mathbb{T}$ invariant under all $T_g, g \in G$;
- (ii) Show that each character $\chi: G \to \mathbb{T}$ is an eigenvector of T_q ;
- (iii) Let $f: G \to \mathbb{T}$ be an eigenvector of each T_g with eigenvalue $\chi(g)$. Show that $\chi(gh) = \chi(g)\chi(h)$.
- (iv) If $\chi(g)$ is as above, show that $f(x) = c\tau(x)$, where c is a constant and $\tau: G \to \mathbb{C}^*$ a homomorphism.

Exercise 4

Recall that discrete topology on a set X is given by the collection of all subsets. Show:

- (i) Any set with discrete topology is metrizable.
- (ii) Any group with discrete topology is automatically a topological group.
- (iii) Construct a non-discrete topology on ℤ making it to a topological group. (Hint. Consider homomorphisms into 𝔄.)