Exercise 1
Give a manifold structure on the n-torus $\mathbb{R}^n/\mathbb{Z}^n$.

Exercise 2
Show that the map
\[t \in \mathbb{R} \mapsto (\cos(\sqrt{2}t)(2 + \cos t), \sin(\sqrt{2}t)(2 + \cos t), \sin t) \in \mathbb{R}^3 \]
defines an immersion whose image S is not a submanifold of \mathbb{R}^3. Show that S is dense in the torus
\[\{(\cos(2 + \cos s), \sin(2 + \cos s), \sin s) \in \mathbb{R}^3 : s, t \in \mathbb{R}\} \].

Exercise 3
The Veronese and Segre maps are given respectively by
\[v: (x, y) \in \mathbb{R}^2 \mapsto (x^n, x^{n-1}y, x^{n-2}y^2, \ldots, x^iy^j, \ldots, y^n) \in \mathbb{R}^{n+1} \]
and
\[s: (x_1, \ldots, x_n, y_1, \ldots, y_m) \in \mathbb{R}^{m+n} \mapsto (x_iy_j)_{1 \leq i \leq n, 1 \leq j \leq m} \in \mathbb{R}^{mn} \].
Is the image of v (resp. s) a submanifold? If not, what is the maximal open set U in the target space such that the intersection of U with image of v (resp. the image of s) is a submanifold?

Exercise 4
A quadric Q (or hyperquadric) in \mathbb{R}^n is the subset given by $\sum_{ij} a_{ij}x^ix^j + \sum_k b_kx^k + c = 0$, where the symmetric matrix (a_{ij}) is invertible. Show that Q is a submanifold everywhere except possibly one point. What is its dimension?

Exercise 5
Let X be a C^k n-manifold and $x \in X$ a point and let $f_1, \ldots, f_m \in C^k(U)$ be functions defined in an open neighborhood U of x such that their differentials at x are linearly independent. Show that there exists a chart at x whose first m components are the f_i.