Course 414 2007-08

Sheet 3

Due: aft	er the l	lecture	first	week	of	the	next	term	

Exercise 1

Let γ be the sum of two line segments connecting -1 with iy and iy with 1, where y is a fixed parameter.

- (i) Write an explicit parametrization for γ ;
- (ii) For every y, evaluate the integrals $\int_{\gamma} z \, dz$ and $\int_{\gamma} \bar{z} \, dz$.

Which of the integrals is independent of y?

Exercise 2

Let $\Omega := \{z \in \mathbb{C} : 1 < |z| < 5\}$ and set $\gamma_r(t) := re^{it}, \lambda(t) := -3 + e^{it}, 0 \le t \le 2\pi$.

- (i) Show that $[\gamma_2] + [\gamma_3]$, $2[\gamma_4]$ and $[\lambda]$ represent cycles in Ω .
- (ii) Show that $[\gamma_2] + [\gamma_3]$ and $2[\gamma_4]$ are homologous in Ω .
- (iii) Which two of the curves γ_2 , γ_3 and λ are homotopic in Ω ? Which two induce homologous cycles in Ω ? Do the answers change, if Ω is replaced by \mathbb{C} ?

Hint. Use Cauchy's Theorem to justify that two curves are not homotopic or that two cycles are not homologous.

Exercise 3

Use the theorem on the power series expansion of holomorphic functions to find the radius of convergence of the Taylor series at 0 of the following functions:

(i) $f(z) = \text{Log}(z^2 - iz + 2)$ (the principal value);

(ii)
$$f(z) = \frac{1}{(z+2)(z-i)\sin(z+\frac{\pi}{2})};$$

Justify your anser.

Exercise 4

Find the maximal open set, where the sequence (f_n) converges compactly (uniformly on every compactum):

(i) $f_n(z) = (z - 1/n)^2;$ (ii) $f_n(z) = z^{n^2};$ (iii) $f_n(z) = e^{nz}$.

Exercise 5

Let (f_n) and (g_n) be compactly convergent sequences of holomorphic functions in Ω .

- (i) Show that the sequences $(f_n + g_n)$ and $(f_n g_n)$ are also compactly convergent in Ω .
- (ii) Suppose in addition that g_n has no zeros in Ω for each n. Is the sequence f_n/g_n always compactly convergent in Ω ?

Exercise 6

Determine the Laurent series expansion of the function f at a and its ring of convergence:

(i) $f(z) = (z^2 + 1)^{-1}, a = i;$ (ii) $f(z) = (z - 1)^{-2} \text{Log } z, a = 1;$ (iii) $f(z) = \frac{\cos(\pi z)}{z(z-2)^3}, a = 2;$

Exercise 7

Let $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$ and $g(z) = \sum_{n=-\infty}^{\infty} b_n (z-z_0)^n$ be Laurent series converging in a ring $r < |z-z_0| < R$. Find the formula for the Laurent series expansion of the product fg and show that it converges in the same ring.

Exercise 8

Determine the multiplicity with which f takes its value at z_0 :

- (i) $f(z) = e^{z \cos z z}, z_0 = 0;$ (ii) $f(z) = (\log(\cos z))^2, z_0 = 2\pi.$
- (iii) $f(z) = (1 + z^2 e^{z^2})^4, z_0 = 0.$