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S h e e t 1

Due: after the lecture

Exercise 1

Give an example of a maximal open set Ω ⊂ C, where the given multiple-valued function

has a holomorphic branch:

(i) (1− z)1/3;

(ii) log(z2 + 1);

(iii)
√
ez.

Justify your answer.

Solution

(i) (1− z)1/3 has the branch

f(z) = |1− z|1/3e
iArg (1−z)

3 , z ∈ Ω := C \ S, S := {x ∈ IR : 1− x ≤ 0}.

Here

−π < Arg (w) ≤ π

is the principal value of the argument, which depends continuously on w away from the

ray IR≤0, but is discontinuous at each point of the ray IR≤0, and has limits π and −π
respectively when restricted to the upper and lower half plane. Hence f(z) is indeed

continuous on Ω, hence is a branch, and further, the corresponding limits at each x ∈ S
for the restrictions of f(z) differ by the factor of eiπ/3 and hence f(z) cannot be extended

to any x ∈ S, proving that Ω is maximal.

Note the other 2 branches given by

f1(z) := eiπ/3f(z), f2(z) := e2iπ/3f(z).

(ii) Writing z2 + 1 = (z − i)(z + i), we see that log(z2 + 1) has infinitely many

values

fk(z) := ln |z2 + 1|+ iArg (z2 + 1) + 2iπk, k ∈ ZZ,

where

z ∈ Ω := C \ S, S := {iy : y ∈ [−∞,−1] ∪ [1,+∞]}.



Indeed, Arg (w) is only discontinuous at w ∈ IR≤0, hence Arg (z2 + 1) is only discontin-

uous at z satisfying z2 + 1 = x ∈ IR≤0, i.e. at

z = ±
√
x− 1 ⇐⇒ z ∈ S.

Alternatively, we can choose branches individually for the arguments of the factors

z − i and z + i, defined away from the ray

R := {iy : y ≥ −1},

then their sum yields a branch of arg((z− i)(z+ i)), which turns out to be continuously

extendible to

R′ := {iy : y ≥ 1},

but not to the interval [−i, i]. This will lead to a branch of f defined on the maximal

set Ω := C \ [−i, i].
(iii) The function

√
ez has 2 branches, each defined globally on C, given by

f1,2(z) = ±e z
2 .

Exercise 2

Let f : Ω ⊂ C → C be continuously IR-differentiable with invertible differential at every

point. Assume that Ω is connected and f preserves non-oriented angles. Show that either

fz̄ = 0 (i.e. f is holomorphic) or fz = 0 (i.e. f is anti-holomorphic).

Solution Fix a point a ∈ Ω and the standard basis u1 = 1, u2 = i of C over IR, and set

vj = dfa(uj), j = 1, 2,

where dfa is the differential of f at a.

Then after composing f with a complex-linear map l(z) = Az, A ∈ C∗, we may

assume that v1 = 1, v2 = λi for some λ ∈ IR∗. Composing further, if necessary, with

the conjugation, we may assume λ > 0. Then

dfa(u1 + u2) = 1 + λi,

and the angle preservation property implies that 1+λi = t(1+i) for some t ∈ IR, whence

λ = 1. This implies that the original differential dfa is ether C-linear or C-antilinear.

Now, we use the continuous dependence of dfa on a to conclude that the set Ω′ ⊂ Ω

of all a with dfa C-linear is both open and closed in Ω. The closedness is obvious and

the openness follows from the assumption that dfa is invertible for each a.



Finally, by connectedness of Ω, it follows that f is either holomorphic or antiholo-

morphic.

Exercise 3

Show that real and imaginary parts u and v of any holomorphic function f are harmonic,

i.e. satisfy the Laplace equation

∆g = 0, ∆ :=
∂2

∂x2
+

∂2

∂x2
, g = u+ iv.

Solution

Direct consequence from the Cauchy-Riemann equations.

Exercise 4

(i) Show that for any complex numbers a, b, the differential operator D = a d
dx + b ddy

is a derivation of the algebra of IR-differentiable functions, i.e. show that

D(fg) = (Df)g + f(Dg).

Solution.

Direct consequence from the Leibnitz rule for the ordinary real partial derivatives.

(ii) Use (i) to show the Leibnitz Rule for the formal derivatives

(fg)z = fzg + fgz, (fg)z̄ = fz̄g + fgz̄.

Solution Follows from (i) since both formal derivatives d
dz and d

dz̄ are of the form D as

in (i).

(iii) Use the Chain Rule for functions of several real variables to show the same Chain

Rule for the formal derivatives:

(f ◦ g)z = fwgz + fw̄ḡz, (f ◦ g)z̄ = fwgz̄ + fw̄ḡz̄

Solution Similar to (ii), we can reduce the problem to the partial derivatives in the

real variables x and y, i.e. to

(f ◦ g)x = fwgx + fw̄ḡx



and the similar identity for y. Then writing g = u+ iv for the function g and w = u+ iv

for the variables by a slight abuse of notation, we have

(f ◦ g)x = fuux + fvvx,

and

fwgx + fw̄ḡx =
1

2
(fu − ifv)(ux + ivx) +

1

2
(fu + ifv)(ux − ivx),

whose right-hand sides coincide by direct calculation. The proof for y instead of x is

similar.

Exercise 5

Determine whether the function f is holomorphic by calculating fz̄ using formulas from

the previous exercise:

(i) f(z) = cos(z2 + z5);

Solution Since g(w) = cos(w) is holomorphnic,

∂z̄ cos(z
2 + z5) = gw(z2 + z5)z̄ = gw(5z4),

which is not identically zero, hence f is not holomorphic.

(ii) f(z) = ez̄9

Solution We need the derivatives of the conjugation

(z̄)z = 0, (z̄)z̄ = 1.

Then begin from inside and compute

(z̄9)z = 0, (z̄9)z̄ = 9z̄8.

Now since g(w) = ew is holomorphic, compute

(g(z̄9))z = 0, (g(z̄9))z = 9gwz̄
8.

Finally, together with the outside conjugation,

∂z̄g(z̄9) = (g(z̄9))z = 0,

hence f is holomoprhic.



Exercise 6

Let Ω := {z ∈ C : 1 < |z| < 5} and set γr(t) := reit, λ(t) := −3 + eit, 0 ≤ t ≤ 2π.

(i) Show that [γ2]− [γ3], 2[γ4] and [λ] represent cycles (chains with zero boundary) in

Ω.

(ii) Show that [γ2] + [γ3] and 2[γ4] are homologous in Ω.

(iii) Which two of the curves γ2, γ3 and λ are homotopic in Ω? Which two induce

homologous cycles in Ω? Do the answers change, if Ω is replaced by C?

Hint. Use Cauchy’s Theorem to justify that two paths are not homotopic as closed paths

or that two cycles are not homologous.

Solution

(i) For every arc γ: [0, 2π] → C with γ(0) = γ(2π) and the corresponding 1-chain

[γ], one has

∂[γ] = [γ(2π)]− [γ(0)],

hence [γ] is a cycle (a chain whose boundary is 0) and sums of cycles are also cycles.

(ii) Here for each j = 2, 3, [γ4] − [γj ] bounds an annulus inside Ω that can be

triangulated into a sum of 2-chains. Hence [γ4]?[γj ] is the boundary of a 2-chain and

hence is null-homologous. Therefore also the sum

([γ4]− [γ2]) + ([γ4]− [γ3]) = 2[γ4]− ([γ2] + [γ3])

is null-homologous as required.

(iii) We claim that the arcs γ2 and γ3 are homotopic to each other as closed arcs

but are not homotopic to γr in Ω. Further, the cycles [γ2] and [γ3] are homologous to

each other but not homologous to [λ] in Ω. A homotopy between γ2 and γ3 can be

obtained via the map

H(s, t) := (2 + s)e, 0 ≤ t ≤ 2π, 0 ≤ s ≤ 1

The cycle [γ2] − [γ3] bounds an annulus in Ω that can be triangulated into a sum of

2-chains, hence it is null-homologous, and hence [γ2] is homologous to [γ3].

To show that γ2 and γ3 are not homotopic to λ, consider the The integral of

f(z) = 1/z, which is 0 over γ by the Cauchy?s theorem. On the other hand, the integral

of f(z) over γ2 and γ3 is 2iπ. This proves the claims.

If ? is replaced by C, all arcs become homotopic and all cycles homologous.

Exercise 7

For any path

γ: [a, b]→ C



and any continuous function f on γ([a, b]), the Cauchy integral is defined by

F (z) :=
1

2πi

∫
γ

f(ζ)

ζ − z
dζ.

(i) Show that F defines a holomorphic function in the complement C \ γ([a, b]).

Solution

Compute

F (z)− F (z0)

z − z0
=

1

2πi

∫
γ

f(ζ) dζ

(ζ − z)(ζ − z0)

that converges to

1

2πi

∫
γ

f(ζ) dζ

(ζ − z0)2

as z → z0, hence F is holomorphic.

(ii) Show that F (z)→ 0 as z →∞.

Solution

Use the estimate

|F (z)| ≤ `(γ)

2π
sup

Γ
|f(ζ)| sup

Γ

∣∣∣∣ 1

|ζ − z|

∣∣∣∣ ,
where Γ = γ([a, b]) and `(γ) is the length.

(iii) Give an example of γ and f and a point z0 ∈ γ([a, b]) such that F has no limit at

z0. (Hint. Choose a closed path.)

Solution

Take γ to be the boundary of the unit disk and f(z) ≡ 1. Then, for every z fixed,

f(ζ)/(ζ − z) as function in ζ has the only singularity at ζ = z with residue f(z) = 1.

Applying the Residue theorem, we obtain that F (z) = 1 whenever z is in the unit disk

and F (z) = 0 whenever z is outside the unit disk. Hence F has no limit at any point of

the boundary of the disk.


