November, 2017 Lecturer Dmitri Zaitsev Michaelmas Term 2017

Course 3423 2017

Sheet 1

Due: after the lecture

Exercise 1

Give an example of a maximal open set 2 C C, where the given multiple-valued function
has a holomorphic branch:

() (1—2)13

(ii) log(2% + 1);
(iii) ve=.

Justify your answer.

Solution
(i) (1 — 2)'/3 has the branch

iArg (1—=z)
3

f(z) = 1= 23 2eQ:=C\S, S={reR:1-2<0}.

Here

—m < Arg(w) <

is the principal value of the argument, which depends continuously on w away from the
ray IR<p, but is discontinuous at each point of the ray IR<¢, and has limits 7 and —7
respectively when restricted to the upper and lower half plane. Hence f(z) is indeed
continuous on €2, hence is a branch, and further, the corresponding limits at each x € S
for the restrictions of f(z) differ by the factor of ¢*™/3 and hence f(z) cannot be extended
to any x € S, proving that ) is maximal.

Note the other 2 branches given by

fi(z) =€ f(2),  falz) = 2T f(2).

(ii) Writing 22 +1 = (2 —4)(z + i), we see that log(z? + 1) has infinitely many
values
fr(2) :=1n|2% + 1| + iArg (2% + 1) + 2ink, k<€ Z,

where

2€Q:=0C\S, S:={iy:ye[-oo,—1]U]IL, +o0]}.



Indeed, Arg (w) is only discontinuous at w € IR<q, hence Arg (22 + 1) is only discontin-

uous at z satisfying 22 + 1 =z € IR<, i.e. at
z=tvr—1 < z€6b.

Alternatively, we can choose branches individually for the arguments of the factors

z — i and z + 1, defined away from the ray
R:={iy:y>—1},

then their sum yields a branch of arg((z —i)(z +1)), which turns out to be continuously
extendible to
R = {iy:y > 1},

but not to the interval [—i,4]. This will lead to a branch of f defined on the maximal
set Q:=C\ [—1,1].
(iii) The function /e has 2 branches, each defined globally on C, given by

fl’g (Z) = :i:e% .

Exercise 2

Let f:Q2 C €C — C be continuously IR-differentiable with invertible differential at every
point. Assume that €2 is connected and f preserves non-oriented angles. Show that either

fz =0 (i.e. f is holomorphic) or f, =0 (i.e. f is anti-holomorphic).
Solution Fix a point a € €2 and the standard basis u; = 1,us = 7 of C over IR, and set

Uj = dfa(uj)a j = 1727

where df, is the differential of f at a.
Then after composing f with a complex-linear map I(z) = Az, A € C*, we may
assume that v; = 1, vo = \i for some A € IR*. Composing further, if necessary, with

the conjugation, we may assume A > 0. Then
dfa(ul + UQ) =1+ )\i,

and the angle preservation property implies that 14+ Ai = ¢(1+1) for some t € IR, whence

A = 1. This implies that the original differential df, is ether C-linear or C-antilinear.
Now, we use the continuous dependence of df, on a to conclude that the set ' C Q

of all a with df, C-linear is both open and closed in €. The closedness is obvious and

the openness follows from the assumption that df, is invertible for each a.



Finally, by connectedness of €2, it follows that f is either holomorphic or antiholo-

morphic.

Exercise 3

Show that real and imaginary parts u and v of any holomorphic function f are harmonic,

i.e. satisfy the Laplace equation

2 2
Ag=0, A: 0 0

Solution

Direct consequence from the Cauchy-Riemann equations.

Exercise 4

(i) Show that for any complex numbers a, b, the differential operator D = a% + bd%

is a derivation of the algebra of IR-differentiable functions, i.e. show that

D(fg) = (Df)g+ f(Dg).
Solution.

Direct consequence from the Leibnitz rule for the ordinary real partial derivatives.

(ii) Use (i) to show the Leibnitz Rule for the formal derivatives
(f9)z = fz9+ fg=, (f9)z = fz9+ [9g=.
Solution Follows from (i) since both formal derivatives d% and % are of the form D as
in (i).

(iii) Use the Chain Rule for functions of several real variables to show the same Chain

Rule for the formal derivatives:

(fog)z:fwgz+fwgza (fog)zszgz—f—fwgz

Solution Similar to (ii), we can reduce the problem to the partial derivatives in the

real variables x and vy, i.e. to

(fo9)z = fuds + fodx



and the similar identity for y. Then writing g = u + v for the function g and w = v+ v

for the variables by a slight abuse of notation, we have

(f og)x = fulg + foUs,
and

fng + fﬂ)gm = %(fu - va)(ugc + ivm) + %(fu + va)(uw — i?}x),

whose right-hand sides coincide by direct calculation. The proof for y instead of z is

similar.

Exercise 5

Determine whether the function f is holomorphic by calculating f; using formulas from
the previous exercise:
(i) f(z) = cos(22 +2°);

Solution Since g(w) = cos(w) is holomorphnic,
0z cos(2? +2°) = gy (22 +2°)z = 9w (57%),

which is not identically zero, hence f is not holomorphic.

(i) f(z) =e*
Solution We need the derivatives of the conjugation
(2): =0, (2):=1.

Then begin from inside and compute

Now since g(w) = e® is holomorphic, compute

(9(z”): =0, (9(2")). = 9gu,2°.

Finally, together with the outside conjugation,

hence f is holomoprhic.



Exercise 6
Let Q:={2€ C:1<|z| <5} and set 7,.(t) := re’, A\(t) :== =3+ €', 0 < t < 2.
(i) Show that [y2] — [y3], 2[4] and [A] represent cycles (chains with zero boundary) in
Q.
(ii) Show that [y2] 4 [v3] and 2[y4] are homologous in .
(iii) Which two of the curves 72, 73 and A are homotopic in 27 Which two induce
homologous cycles in 27 Do the answers change, if ) is replaced by C?
Hint. Use Cauchy’s Theorem to justify that two paths are not homotopic as closed paths

or that two cycles are not homologous.

Solution
(i) For every arc v:[0,27] — € with (0) = v(27) and the corresponding 1-chain
[v], one has

] = [y(2m)] = [(0)],

hence [v] is a cycle (a chain whose boundary is 0) and sums of cycles are also cycles.
(ii) Here for each j = 2,3, [y4] — [v;] bounds an annulus inside €2 that can be
triangulated into a sum of 2-chains. Hence [y4]?[y;] is the boundary of a 2-chain and

hence is null-homologous. Therefore also the sum

([val = [v2]) + ([ra] = [v3]) = 2[va] = ([v2] + [¥3])

is null-homologous as required.

(iii) We claim that the arcs 72 and ~y3 are homotopic to each other as closed arcs
but are not homotopic to . in Q. Further, the cycles [vy2] and [y3] are homologous to
each other but not homologous to [A] in . A homotopy between 7, and 73 can be

obtained via the map
H(s,t):=(2+s)e, 0<t<2m, 0<s<1

The cycle [y2] — [v3] bounds an annulus in €2 that can be triangulated into a sum of
2-chains, hence it is null-homologous, and hence [7y3] is homologous to [7s].

To show that s and 73 are not homotopic to A, consider the The integral of
f(2) = 1/z, which is 0 over 7 by the Cauchy?s theorem. On the other hand, the integral
of f(z) over 75 and 73 is 2iw. This proves the claims.

If 7 is replaced by C, all arcs become homotopic and all cycles homologous.

Exercise 7

For any path
v:la,b] — C



and any continuous function f on ~y([a,b]), the Cauchy integral is defined by
1 f(Q)
Flz) = — | 2%
()= o5 L - %

(i) Show that F' defines a holomorphic function in the complement C \ v([a, ]).

Solution

Compute

that converges to

2mi

1 f(¢)d¢
/7 (€ — 20)?

as z — 2p, hence F' is holomorphic.
(ii) Show that F'(z) — 0 as z — oc.

Solution

Use the estimate

& u u !
|F(2)] < o SFp|f(C)|SFP IC— 2]

Y

where I' = v([a, b]) and £(7) is the length.

(iii) Give an example of v and f and a point zg € y([a, b]) such that F' has no limit at
2p. (Hint. Choose a closed path.)

Solution

Take 7 to be the boundary of the unit disk and f(z) = 1. Then, for every z fixed,
f(€)/(¢ — 2) as function in ¢ has the only singularity at ¢ = z with residue f(z) = 1.
Applying the Residue theorem, we obtain that F'(z) = 1 whenever z is in the unit disk
and F'(z) = 0 whenever z is outside the unit disk. Hence F' has no limit at any point of
the boundary of the disk.



