Exercise 1
Following the line of the proof of Liouville’s Theorem, show that if \(f \) is holomorphic in \(\mathbb{C} \) and satisfies \(|f(z)| \leq A|z|^2 + B|z| + C \) for some fixed \(A, B, C > 0 \), then \(f \) is affine linear, i.e. \(f(z) = az^2 + bz + c \) for some \(a, b \in \mathbb{C} \).

Exercise 2
Following the line of the proof of the Fundamental Theorem of Algebra, show that if \(f \) is holomorphic in \(\mathbb{C} \) and satisfies \(f(z) \to \infty \) as \(z \to \infty \), then there exists \(z \) with \(f(z) = 0 \).

Exercise 3
Determine the type of singularity (removable, pole, essential or not isolated):

(i) \(f(z) = \frac{\sin z}{z + \pi} \) at \(z_0 = -\pi \);
(ii) \(f(z) = \frac{\cos z - 1}{z^2} \) at \(z_0 = 0 \);
(iii) \(f(z) = z^3 e^{1/z} \) at \(z_0 = 0 \);
(iv) \(f(z) = \frac{z^4 - z}{z^7 + z - 1} \) at \(z_0 = 0 \);

Exercise 4
For each function \(f \) from the previous exercise, determine a maximal open set \(\Omega \subset \mathbb{C} \) such that \(f \) is meromorphic in \(\Omega \).
Exercise 5

Let \(f \) have a pole of order \(m \) at a point \(z_0 \) and \(g \) have pole of order \(n \) at the same point.

(i) Does \(f + g \) always have an isolated singularity at \(z_0 \)?
(ii) Does \(f + g \) always have a pole at \(z_0 \)?
(iii) Same question for \(h = fg \)?
(iv) In cases \(f + g \) or \(fg \) have a pole at \(z_0 \), what are the possible pole orders?

Exercise 6

Use Rouché's theorem to find the number of zeroes of the function inside the circle \(|z| = 1 \):

(i) \(f(z) = z^{66} - 19z^7 + z^2 - 2z + e^{z^2} \);
(ii) \(f(z) = 2z^{48} - 6z^{73} + z^2 - 38z^{15} + 1 + e^z \sin z \);

Exercise 7

(i) Show that the sequence \(f_n(z) = z^{2n} + z^{n+1} \) converges uniformly on every compact subset of the unit disk \(\Omega := \{ |z| < 1 \} \) but not uniformly on \(\Omega \).
(ii) Show the similar property for the power series \(\sum_{n=0}^{\infty} (-z)^n \).

Exercise 8

Find the maximal open set, where the sequence \((f_n) \) converges compactly (uniformly on every compactum):

(i) \(f_n(z) = (z^2 - \frac{1}{2n})^2 \);
(ii) \(f_n(z) = e^z - \frac{1}{n} \);
(iii) \(f_n(z) = e^{-nz} \).

Exercise 9

Let \((f_n) \) and \((g_n) \) be compactly convergent sequences of holomorphic functions in \(\Omega \).

(i) Show that the sequences \((f_n + g_n) \) and \((f_n g_n) \) are also compactly convergent in \(\Omega \).
 Is the same conclusion true with “compactly” replaced by “uniformly”?
(ii) Suppose in addition that \(g_n \) has no zeros in \(\Omega \) for each \(n \). Is the sequence \(f_n/g_n \) always compactly convergent in \(\Omega \)?