Course 3423 2015

Sheet 2

Due: after the lecture Friday 4 December

Exercise 1

Following the line of the proof of Liouville's Theorem, show that if f is holomorphic in \mathbb{C} and satisfies $|f(z)| \leq A|z|^2 + B|z| + C$ for some fixed A, B, C > 0, then f is affine linear, i.e. $f(z) = az^2 + bz + c$ for some $a, b \in \mathbb{C}$.

Exercise 2

Following the line of the proof of the Fundamental Theorem of Algebra, show that if f is holomorphic in \mathbb{C} and satisfies $f(z) \to \infty$ as $z \to \infty$, then there exists z with f(z) = 0.

Exercise 3

Determine the type of singularity (removable, pole, essential or not isolated):

(i) $f(z) = \frac{\sin z}{z+\pi}$ at $z_0 = -\pi$;

(ii)
$$f(z) = \frac{\cos z - 1}{z^2}$$
 at $z_0 = 0$

- (iii) $f(z) = z^3 e^{1/z}$ at $z_0 = 0;$
- (iv) $f(z) = \frac{z^4 z}{e^{1/z} 1}$ at $z_0 = 0$;

Exercise 4

For each function f from the previous exercise, determine a maximal open set $\Omega \subset \mathbb{C}$ such that f is meromorphic in Ω .

Exercise 5

Let f have a pole of order m at a point z_0 and g have pole of order n at the same point.

- (i) Does f + g always have an isolated singularity at z_0 ?
- (ii) Does f + g always have a pole at z_0 ?
- (iii) Same question for h = fg?
- (iv) In cases f + g or fg have a pole at z_0 , what are the possible pole orders?

Exercise 6

Use Rouché's theorem to find the number of zeroes of the function inside the circle |z| = 1:

- (i) $f(z) = z^{66} 19z^7 + z^2 2z + e^{z^2}$;
- (ii) $f(z) = 2z^{48} 6z^{73} + z^2 38z^{15} + 1 + e^z \sin z;$

Exercise 7

- (i) Show that the sequence $f_n(z) = z^{2n} + z^{n+1}$ converges uniformly on every compact subset of the unit disk $\Omega := \{|z| < 1\}$ but not uniformly on Ω .
- (ii) Show the similar property for the power series $\sum_{n=0}^{\infty} (-z)^{n^2}$.

Exercise 8

Find the maximal open set, where the sequence (f_n) converges compactly (uniformly on every compactum):

(i) $f_n(z) = (z^2 - \frac{1}{2n})^2;$ (ii) $f_n(z) = e^z - \frac{1}{n};$ (iii) $f_n(z) = e^{-n}z.$

Exercise 9

Let (f_n) and (g_n) be compactly convergent sequences of holomorphic functions in Ω .

- (i) Show that the sequences $(f_n + g_n)$ and $(f_n g_n)$ are also compactly convergent in Ω . Is the same conclusion true with "compactly" replaced by "uniformly"?
- (ii) Suppose in addition that g_n has no zeros in Ω for each n. Is the sequence f_n/g_n always compactly convergent in Ω ?