MAU34205 2019

Sheet 2

Due: after the lecture 15 N	ovember
-----------------------------	---------

Exercise 1

Determine the zero order of f at 0:

- (i) $f(z) = 2z \cos z \sin z z;$
- (ii) $f(z) = (\log(\cos z + z \sin z))^3$;
- (iii) $f(z) = (1 + z^2 e^{z^3})^{10}$.

Exercise 2

Let (f_n) and (g_n) be compactly convergent sequences of holomorphic functions in Ω .

- (i) Show that the sequences (f_n+g_n) , (f_ng_n) and $(\sin f_n)$ are also compactly convergent in Ω .
- (ii) Is the same conclusion true with "compactly" replaced by "uniformly"?
- (iii) Suppose in addition that g_n has no zeros in Ω for each n. Is the sequence f_n/g_n always compactly convergent in Ω ?

Exercise 3

Give examples of a connected open set (domain) $\Omega \subset \mathbb{C}$ and a holomorphic function f in Ω such that:

- (i) Ω is bounded and $f \not\equiv 0$ has infinitely many zeros;
- (ii) the same as in (i) but f is, in addition, bounded on Ω ;

Exercise 4

Use Rouché's theorem to find the number of zeroes of the function inside the circle |z| = 1:

- (i) $f(z) = z^{16} 19z^5 + z^2 2z + e^{z^2};$
- (ii) $f(z) = 2z^{48} 6z^{73} + z^2 48z^{11} + 1 + e^z \sin z;$