MAU34205 2019

Sheet 1

Due: after the lecture next Wednesday

Exercise 1

Give an example of a maximal open set $\Omega \subset \mathbb{C}$, where the given multiple-valued function has a holomorphic branch:

(i) $(1-z)^{-1/3}$; (ii) $\log(z^2+z)$; (iii) $\sqrt{e^z+1}$.

Justify your answer.

Exercise 2

Let $f: \Omega \subset \mathbb{C} \to \mathbb{C}$ be continuously IR-differentiable with invertible differential at every point, and let L_1, L_2, L_3 be three different real lines in \mathbb{C} .

(i) Assume that Ω is connected and f preserves non-oriented angles. Show that either $f_{\bar{z}} = 0$ (i.e. f is holomorphic) or $f_z = 0$ (i.e. f is anti-holomorphic).

Does the same conclusion holds as in (i) if Ω is connected and:

- (ii) f preserves non-oriented angles between lines parallel to L_1 and L_2 through each point.
- (ii) f preserves non-oriented angles between lines parallel to L_1 and L_2 , and lines parallel to L_2 and L_3 through each point.

Exercise 3

Show that real and imaginary parts u and v of any holomorphic function f are harmonic, i.e. satisfy the Laplace equation

$$\Delta g = 0, \quad \Delta := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2}, \quad g = u + iv.$$

Exercise 4

(i) Show that for any complex numbers a, b, the differential operator $D = a \frac{d}{dx} + b \frac{d}{dy}$ is a derivation of the algebra of IR-differentiable functions, i.e. show that

$$D(fg) = (Df)g + f(Dg).$$

(ii) Use (i) to show the Leibnitz Rule for the formal derivatives

$$(fg)_z = f_z g + fg_z, \quad (fg)_{\overline{z}} = f_{\overline{z}} g + fg_{\overline{z}}.$$

(iii) Use the Chain Rule for functions of several real variables to show the same Chain Rule for the formal derivatives:

$$(f \circ g)_z = f_w g_z + f_{\bar{w}} \bar{g}_z, \quad (f \circ g)_{\bar{z}} = f_w g_{\bar{z}} + f_{\bar{w}} \bar{g}_{\bar{z}}$$

Exercise 5

Determine whether the function f is holomorphic by calculating $f_{\bar{z}}$ using formulas from the previous exercise:

(i) $f(z) = \cos(z^2 \overline{z}^5);$ (ii) $f(z) = \overline{\sin(\overline{z}^9)}$

Exercise 6

Let $\Omega := \{z \in \mathbb{C} : 1 < |z| < 5\}$ and set $\gamma_r(t) := re^{it}, \lambda(t) := -3 + e^{it}, 0 \le t \le 2\pi$.

- (i) Show that $[\gamma_2] [\gamma_3]$, $2[\gamma_4]$ and $[\lambda]$ represent cycles (chains with zero boundary) in Ω .
- (ii) Show that $[\gamma_2] + [\gamma_3]$ and $2[\gamma_4]$ are homologous in Ω .
- (iii) Which two of the curves γ_2 , γ_3 and λ are homotopic in Ω ? Which two induce homologous cycles in Ω ? Do the answers change, if Ω is replaced by \mathbb{C} ?

Hint. Use Cauchy's Theorem to justify that two paths are not homotopic as closed paths or that two cycles are not homologous.

Exercise 7

For any path

$$\gamma: [a, b] \to \mathbb{C}$$

and any continuous function f on $\gamma([a, b])$, the Cauchy integral is defined by

$$F(z) := \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

- (i) Show that F defines a holomorphic function in the complement $\mathbb{C} \setminus \gamma([a, b])$.
- (ii) Show that $F(z) \to 0$ as $z \to \infty$.
- (iii) Give an example of γ and f and a point $z_0 \in \gamma([a, b])$ such that F has no limit at z_0 . (Hint. Choose a closed path.)