Course 3423/4 2013-14

Sheet 3

Due: after the lecture first week of the next term

Exercise 1

Determine the Laurent series expansion of the function f at a and its ring of convergence:

(i) $f(z) = \frac{z^2}{z-1}, a = 1;$ (ii) $f(z) = (z^2 + 1)^{-1}, a = -i;$ (iii) $f(z) = (z - \pi)^{-3} \cos z, a = \pi;$ (iv) $f(z) = \frac{\log z}{(z-i)^3}, a = i;$

Exercise 2

Let $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$ and $g(z) = \sum_{n=-\infty}^{\infty} b_n (z-z_0)^n$ be Laurent series converging in a ring $r < |z-z_0| < R$. Find the formula for the Laurent series expansion of the product fg and show that it converges in the same ring.

Exercise 3

Determine the zero order of f at z_0 :

(i) $f(z) = z \cos z - \sin z, z_0 = 0;$ (ii) $f(z) = (\log(1 + z - \sin z))^2, z_0 = 2\pi.$ (iii) $f(z) = (1 + z^3 - e^{z^3})^{10}, z_0 = 0.$

Exercise 4

Determine the type of singularity (removable, pole, essential or not isolated):

(i) $f(z) = \frac{\sin z}{z - \pi}$ at $z_0 = \pi$; (ii) $f(z) = \frac{\cos z - 1}{z^2}$ at $z_0 = 0$; (iii) $f(z) = z^4 e^{1/z}$ at $z_0 = 0$; (iv) $f(z) = \frac{z^2}{e^{1/z} - 1}$ at $z_0 = 0$;

Exercise 5

For each function f from the previous exercise, determine a maximal open set $\Omega \subset \mathbb{C}$ such that f is meromorphic in Ω .

Exercise 6

Let f have a pole of order m at a point z_0 and g have pole of order n at the same point.

- (i) Does f + g always have an isolated singularity at z_0 ?
- (ii) Does f + g always have a pole at z_0 ?
- (iii) Same question for h = fg?
- (iv) In cases f + g or fg have a pole at z_0 , what are the possible pole orders?

Exercise 7

Use Rouché's theorem to find the number of zeroes of the function inside the circle |z| = 1:

- (i) $f(z) = z^{66} 10z^5 + z^2 2z + e^{z^2};$
- (ii) $f(z) = 2z^{48} 6z^6 + z^2 38z^{15} + 1 + e^z \sin z;$