Course 3423/4 2013-14

Sheet 2

Due: after the lecture Tuesday 12 November

Exercise 1

Determine the radius of convergence of the power series:

- (i) $\sum \frac{z^n}{n^5}$;
- (ii) $\sum_{n=1}^{\infty} (3^n + (-2)^n) z^{2n};$
- (iii) $\sum n! z^{2n+1}$.

Exercise 2

Following the line of the proof of Liouville's Theorem, show that if f is holomorphic in \mathbb{C} and satisfies $|f(z)| \leq A|z| + B$ for some fixed A, B > 0, then f is affine linear, i.e. f(z) = az + b for some $a, b \in \mathbb{C}$.

Exercise 3

Following the line of the proof of the Fundamental Theorem of Algebra, show that if f is holomorphic in \mathbb{C} and satisfies $f(z) \to \infty$ as $z \to \infty$, then the exists z with f(z) = 0.

Exercise 4

- (i) Show that the sequence $f_n(z) = z^n + z^{n+1}$ converges uniformly on every compact subset of the unit disk $\Omega := \{|z| < 1\}$ but not uniformly on Ω .
- (ii) Show the similar property for the power series $\sum_{n=0}^{\infty} (-z)^n$.

Exercise 5

Find the maximal open set, where the sequence (f_n) converges compactly (uniformly on every compactum):

- (i) $f_n(z) = (z \frac{1}{2n})^2;$
- (ii) $f_n(z) = z \frac{1}{2n};$
- (iii) $f_n(z) = e^{n^2 z}$.

Exercise 6

Let (f_n) and (g_n) be compactly convergent sequences of holomorphic functions in Ω .

- (i) Show that the sequences $(f_n + g_n)$ and $(f_n g_n)$ are also compactly convergent in Ω . Is the same conclusion true with "compactly" replaced by "uniformly"?
- (ii) Suppose in addition that g_n has no zeros in Ω for each n. Is the sequence f_n/g_n always compactly convergent in Ω ?