Course 3423/4 2013-14

Sheet 1

Due: after the lecture next Wednesday

Exercise 1

Show that

$$\frac{e^{i\theta_1} - 1}{e^{i\theta_2} - 1}$$

cannot be not real for all θ_1 and θ_2 .

Exercise 2

Consider the arcs

$$\gamma_1(t) = t$$
, $\gamma_2(t) = it$, $\gamma_3(t) = (1+i)t$, $0 \le t \le 1$.

Assume that f is \mathbb{R} -differentiable at 0 with $df|_0$ invertible and f preserves angles between γ_1, γ_2 and between γ_1, γ_3 . Show that f satisfies the Cauchy-Riemann equations at 0.

Exercise 3

Prove the differentiation rules for the formal derivatives:

[(i)] The Leibnitz Rule:

$$(fg)_z = f_z g + f g_z, \quad (fg)_{\bar{z}} = f_{\bar{z}} g + f g_{\bar{z}}.$$

[(ii)] The Chain Rule:

$$(f \circ g)_z = f_w g_z + f_{\bar{w}} \bar{g}_z, \quad (f \circ g)_{\bar{z}} = f_w g_{\bar{z}} + f_{\bar{w}} \bar{g}_{\bar{z}}$$

Exercise 4

Determine whether the function f is holomorphic by calculating $f_{\bar{z}}$ using formulas from the previous exercise:

(i)
$$f(z) = \cos(z^2 \bar{z}^3);$$

(ii)
$$f(z) = e^{z^2 + \bar{z}^2}$$
;

(iii)
$$f(z) = \overline{\sin(\bar{z}^6)}$$