Exercise 1
Show that
\[\frac{e^{i\theta_1} - 1}{e^{i\theta_2} - 1} \]
cannot be not real for all \(\theta_1 \) and \(\theta_2 \).

Exercise 2
Consider the arcs
\[\gamma_1(t) = t, \quad \gamma_2(t) = it, \quad \gamma_3(t) = (1 + i)t, \quad 0 \leq t \leq 1. \]
Assume that \(f \) is \(\mathbb{R} \)-differentiable at 0 with \(df|_0 \) invertible and \(f \) preserves angles between \(\gamma_1, \gamma_2 \) and between \(\gamma_1, \gamma_3 \). Show that \(f \) satisfies the Cauchy-Riemann equations at 0.

Exercise 3
Prove the differentiation rules for the formal derivatives:

[(i)] The Leibnitz Rule:
\[(fg)_z = f_z g + fg_z, \quad (fg)_\bar{z} = f_\bar{z} g + f g_\bar{z}. \]

[(ii)] The Chain Rule:
\[(f \circ g)_z = f_w g_z + f_w g_\bar{z}, \quad (f \circ g)_\bar{z} = f_w g_z + f_w g_\bar{z}. \]

Exercise 4
Determine whether the function \(f \) is holomorphic by calculating \(f_z \) using formulas from the previous exercise:

(i) \(f(z) = \cos(z^2\bar{z}^3) \);
(ii) \(f(z) = e^{z^2 + \bar{z}^2} \);
(iii) \(f(z) = \sin(\bar{z}^6) \)