Exercise 1
Let f have a pole of order m at a point z_0 and g have pole of order n at the same point.
 (i) Does $f + g$ always have an isolated singularity at z_0?
 (ii) Does $f + g$ always have a pole at z_0?
 (iii) Same question for $h = fg$?
 (iv) In cases $f + g$ or fg have a pole at z_0, what are the possible pole orders?

Exercise 2
If f and g are entire functions (holomorphic in \mathbb{C}) and $|f(z)| \leq |g(z)|^3$ for all z, show that $f(z) = cg(z)^3$ for some constant c.

Exercise 3
Suppose that f is meromorphic in \mathbb{C} and bounded outside a disk $B_R(0)$. Show that f is rational. (Hint. Try to eliminate the poles inside the disk.)

Exercise 4
Use Rouché’s theorem to find the number of zeroes of the function inside the circle $|z| = 1$:
 (i) $f(z) = z^{11} - 8z^7 + z^2 - 2z$;
 (ii) $f(z) = 2z^{48} - 2z^3 + z^2 - 18z^5 + 1$;

Exercise 5
Find all Möbius transformations
 (i) sending $1, -1, 0$ onto $0, 1, \infty$ respectively;
 (ii) preserving the imaginary line $i\mathbb{R}$;
 (iii) preserving the unit circle.
Exercise 6

Let $\Omega \subset \mathbb{C}$ be open and connected and $f: \Omega \to \mathbb{C}$ a holomorphic map. Show that either $f \equiv \infty$ or the set $f^{-1}(\infty)$ has no limit points in Ω.

Exercise 7

Find all biholomorphic self-maps of Ω:

(i) $\Omega = \{z : |\text{Im} z| < 1\}$ (Hint. Find a biholomorphic map of the strip onto the upper-half plane using e^z.)

(ii) $\Omega = \mathbb{H} \setminus \{2i\}$, where \mathbb{H} is the upper-half plane.