Course 3423/4 2011-12

Sheet 3

Due: after the lecture first week of the next term

Exercise 1

Determine the Laurent series expansion of the function f at a and its ring of convergence:

(i)
$$f(z) = \frac{z}{z-1}$$
, $a = 1$;

(ii)
$$f(z) = (z^2 + 1)^{-1}, a = -i;$$

(iii)
$$f(z) = (z - \pi)^{-3} \cos z, \ a = \pi;$$

(iv)
$$f(z) = \frac{\log z}{(z-i)^3}, a = i;$$

Exercise 2

Let $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$ and $g(z) = \sum_{n=-\infty}^{\infty} b_n (z-z_0)^n$ be Laurent series converging in a ring $r < |z-z_0| < R$. Find the formula for the Laurent series expansion of the product fg and show that it converges in the same ring.

Exercise 3

Determine the zero order of f at z_0 :

(i)
$$f(z) = z \cos z - z$$
, $z_0 = 0$;

(ii)
$$f(z) = (\text{Log}(1+z-\sin z))^2$$
, $z_0 = 2\pi$.

(iii)
$$f(z) = (1 + z^2 - e^{z^2})^{20}, z_0 = 0.$$

Exercise 4

Determine the type of singularity (removable, pole, essential or not isolated):

(i)
$$f(z) = \frac{\sin z}{z - \pi}$$
 at $z_0 = \pi$;

(ii)
$$f(z) = \frac{\cos z - 1}{z^2}$$
 at $z_0 = 0$;

(iii)
$$f(z) = z^4 e^{1/z}$$
 at $z_0 = 0$;

(iv)
$$f(z) = \frac{z^2}{e^{1/z} - 1}$$
 at $z_0 = 0$;

Exercise 5

For each function f from the previous exercise, determine a maximal open set $\Omega \subset \mathbb{C}$ such that f is meromorphic in Ω .