Course 3423/4 2009-10

Sheet 4

Due: after the lecture first week of the next term

Exercise 1

Let f have a pole of order m at a point z_0 and g have pole of order n at the same point.

- (i) Does f + g always have an isolated singularity at z_0 ?
- (ii) Does f + g always have a pole at z_0 ?
- (iii) Same question for h = fg?
- (iv) In cases f + g or fg have a pole at z_0 , what are the possible pole orders?

Exercise 2

If f and g are entire functions (holomorphic in \mathbb{C}) and $|f(z)| \leq |g(z)|^2$ for all z, show that f(z) = cg(z) for some constant c. (Hint. Consider the function f/g^2 .)

Exercise 3

Suppose that f is meromorphic in \mathbb{C} and bounded outside a disk $B_R(0)$. Show that f is rational. (Hint. Try to eliminate the poles inside the disk.)

Exercise 4

Use Rouché's theorem to find the number of zeroes of the function inside the circle |z| = 1:

(i)
$$f(z) = z^{11} - 6z^3 + z^2 - 2z;$$

(ii) $f(z) = 2z^{44} - 2z^3 + z^2 - 7z + 1;$

Exercise 5

Find all Möbius transformations

- (i) sending 1, -1, 0 onto 0, 1, ∞ respectively;
- (ii) sending 1 and 0 onto 0 and 1 respectively;
- (iii) sending 0 to ∞ .

Exercise 6

Let $\Omega \subset \overline{\mathbb{C}}$ be open and connected and $f: \Omega \to \overline{\mathbb{C}}$ a holomorphic map. Show that either $f \equiv \infty$ or the set $f^{-1}(\infty)$ has no limit points in Ω .

Exercise 7

Find all biholomorphic self-maps of $\Omega :$

- (i) $\Omega = \{z : |\mathsf{Re}z| < 1\}$ (Hint. Find a biholomorphic map of the strip onto the upperhalf plane using e^z .)
- (ii) $\Omega = H \setminus \{i\}$, where H is the upper-half plane.