Course 2E2 2008-09 (SF Engineers & MSISS & MEMS)

Due: at the end of the tutorial

Sheet 1

Exercise 1

(i) $\mathbf{v} + \mathbf{u} = (-1, 3, 0), -3\mathbf{v} = (6, -3, 0), \|\mathbf{u}\| = \|\mathbf{v}\| = \sqrt{5}, \mathbf{u} \cdot \mathbf{v} = 0$, angle is $\pi/2$, orthogonal;

(ii) $\mathbf{v} + \mathbf{u} = (2, 1, -2, 2, 0), -3\mathbf{v} = (-3, -3, 6, -3, 0), \|\mathbf{u}\| = \sqrt{2}, \|\mathbf{v}\| = \sqrt{7}, \mathbf{u} \cdot \mathbf{v} = 2$, angle is $\cos^{-1} \frac{2}{\sqrt{14}}$, not orthogonal;

(iii) $\mathbf{v} + \mathbf{u} = (1, 2k, 3, 7 - k), -3\mathbf{v} = (0, -3k, -3, -21), \|\mathbf{u}\| = \sqrt{5 + 2k^2}, \|\mathbf{v}\| = \sqrt{50 + k^2}, \mathbf{u} \cdot \mathbf{v} = k^2 - 7k + 2$, angle is $\cos^{-1} \frac{k^2 - 7k + 2}{\sqrt{(2k^2 + 5)(k^2 + 50)}}$, orthogonal for all k with $k^2 - 7k + 2 = 0$;

(iv)
$$\mathbf{v} + \mathbf{u} = (a - 2c, a + c, -c, b, d), -3\mathbf{v} = (6c, -3a, 3c, 0, -3d),$$

 $\|\mathbf{u}\| = \sqrt{a^2 + b^2 + c^2}, \|\mathbf{v}\| = \sqrt{a^2 + 5c^2 + d^2}, \mathbf{u} \cdot \mathbf{v} = -ac,$
angle is $\cos^{-1} \frac{-ac}{\sqrt{(a^2 + b^2 + c^2)(a^2 + 5c^2 + d^2)}}$, orthogonal if either $a = 0$ or $c = 0$;

Exercise 2

(i)
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
;

(ii)
$$\begin{pmatrix} 1 & 0 & -3 \\ 0 & 0 & -1 \\ 0 & -2 & 0 \end{pmatrix};$$

$$\text{(iii)} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix};$$

(iv)
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
;

$$(v) \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$$

Sheet 2

Exercise 1

(i)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
;

(ii)
$$\begin{pmatrix} -1 \\ 3 \end{pmatrix}$$
;

(iii) doesn't make sense.

Exercise 2

(i)
$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
;

(ii)
$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$
;

$$(iii) \begin{pmatrix} \frac{1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{-1-\sqrt{3}}{2} \\ \frac{1-\sqrt{3}}{2} \end{pmatrix};$$

(iv)
$$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2\\ 1\\ -1 \end{pmatrix} = \begin{pmatrix} \frac{3}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}}\\ -1 \end{pmatrix}.$$

Sheet 3

Exercise 1

- (i) subspace;
- (ii) not subspace;
- (iii) subspace.

Exercise 2

- (i) don't span;
- (ii) span;
- (iii) don't span.

Sheet 4

Exercise 1

(i)
$$x = t$$
, $y = -2t$, $z = t$;

(ii)
$$2x + y = 0$$
, $x - z = 0$;

(iii)
$$x + y + z = 0$$
.

(The answers are not unique)

Exercise 2

(i), (ii), (iii), (v) are linearly dependent, (iv) is linearly independent.

Sheet 5

Exercise 1

(ii) is a basis, (i), (iii), (iv), (v), (iv) are not bases.

Exercise 2

(i)
$$k_1 = \frac{7}{5}$$
, $k_2 = \frac{4}{3}$;

(ii)
$$k_1 = \frac{5}{2}$$
, $c_2 = -\frac{1}{2}$, $c_3 = 4$;

(iii)
$$k_1 = -3$$
, $k_2 = 0$, $k_3 = -1$, $k_4 = 2$.

Sheet 6

Exercise 1

- (i) row space basis $\{(1,3)\}$, column space basis $\{(-1)\}$, null space basis $\{(3,-1)\}$, dimension is 1 for all;
- (ii) row space basis $\{(1)\}$, column space basis $\{\begin{pmatrix} -1\\-3 \end{pmatrix}\}$, dimension is 1 for both, null space is zero, it has empty basis, its dimension is 0;
- (iii) row space basis $\{(1,-2)\}$, column space basis $\{\begin{pmatrix}1\\-1\end{pmatrix}\}$, dimension is 1 for both, null space basis $\{(2,1)\}$, its dimension is 1;
- (iv) row space basis $\{(1,3,0),(0,5,1)\}$, column space basis $\{\begin{pmatrix}1\\-1\end{pmatrix},\begin{pmatrix}3\\2\end{pmatrix}\}$, dimension 2 for both, null space basis $\{(3,1,1)\}$, its dimension is 1;
 - (v) row space basis $\{(1,2),(1,0)\}$, column space basis $\{\begin{pmatrix}1\\-1\\2\end{pmatrix},\begin{pmatrix}2\\2\\0\end{pmatrix}\}$, dimension
- 2 for both, null space is zero, it has empty basis, its dimension is 0.

(The choice of bases is not unique.)

Exercise 2

- (i) $\{\mathbf{u}_1\}$;
- (ii) $\{\mathbf{u}_1, \mathbf{u}_2\};$

Sheet 7

Exercise 1

- (i) rank 1, nullity 2;
- (ii) rank 3, nullity 0.

Exercise 1

- (i) length $\sqrt{3}$, distance $\sqrt{5}$, angle $\pi/2$;
- (ii) length $\sqrt{6}$, distance $\sqrt{7}$, angle $\pi/2$.

Sheet 8

Exercise 1

- (i) orthogonal but not orthonormal;
- (ii) orthogonal but not orthonormal;
- (iii) orthogonal and orthonormal.

Exercise 2

(i)
$$c_1 = 1$$
, $c_2 = -\frac{2}{5}$, $c_3 = -\frac{1}{5}$;

(ii)
$$c_1 = 1$$
, $c_2 = \frac{1}{25}$, $c_3 = -\frac{7}{25}$.

Sheet 9

Exercise 1

- (i) $\{(-1,2), \frac{1}{5}(8,7)\};$
- (ii) $\{(1,0,1), \frac{1}{2}(1,2,1), \frac{1}{3}(1,-1,1)\};$
- (iii) $\{(1,0,-1,0), \frac{1}{2}(1,2,1,0), \frac{1}{3}(1,-1,1,0), (0,0,0,1)\}.$

Exercise 2

- (i) x = 1/5;
- (ii) x = y = z = 1/4.

Sheet 10

Exercise 1

- (i) $(\lambda + 2)(\lambda + 1)$;
- (ii) $\lambda^2 + 18$;
- (iii) $\lambda(\lambda-1)(\lambda+3)$;
- (iv) $\lambda(\lambda^2-2\lambda-3)$.

Exercise 2

- (i) eigenvalues -1 and 5, corresponding eigenvectors (6, -1) and (0, 1);
- (ii) eigenvalues 1, 3 and 0, corresponding eigenvectors (1,0,0), (0,1,1) and (3,2,-1);
- (iii) eigenvalues 1, 3, 0 and 0 (i.e. 0 is counted with multiplicity 2), corresponding eigenvectors (1,0,0,1), (0,1,1,0), (3,2,-1,0) and (0,0,0,1) (the last are two linearly independent eigenvectors with eigenvalue 0).

(The eigenvectors are not unique)

Exercise 2

(i)
$$P = \begin{pmatrix} 6 & -1 \\ 0 & 1 \end{pmatrix}$$
, $D = \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix}$;

(ii)
$$P = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 1 & -1 \end{pmatrix}$$
, $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Sheet 11

Exercise 1

(i) orthogonal;

- (ii) orthogonal;
- (iii) not orthogonal;

Sheet 12

Exercise 1

- (i) orthogonal;
- (ii) orthogonal;
- (iii) not orthogonal;

Exercise 2

$$1 + 2\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin nx;$$

Sheet 13

Exercise 1

(i)
$$\frac{1}{2} - \frac{3}{\pi} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n} \sin nx;$$

(ii)
$$\frac{3\pi}{4} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{n^2} \cos nx - \sum_{n=1}^{\infty} \frac{2(-1)^n - 1}{n} \sin nx$$
.

Exercise 2

Using Euler's formulas, we have:

$$A(w) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(x) \cos wx \, dx, \quad B(w) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(x) \sin wx \, dx.$$

Splitting the integration and substituting f, we obtain:

$$A(w) = \frac{1}{\pi} \int_{-1}^{1} x \cos wx \, dx = 0$$

since $x \cos wx$ is odd and

$$B(w) = \frac{1}{\pi} \int_{-1}^{1} x \sin wx \, dx = \frac{2}{\pi} (\frac{\sin w}{w^2} - \frac{\cos w}{w}),$$

where we have used integration by parts. Then the Fourier Integral representation gives

$$f(x) = \int_0^{+\infty} (A(w) \cos wx + B(w) \sin wx) \, dw = \frac{2}{\pi} \int_0^{+\infty} (\frac{\sin w}{w^2} - \frac{\cos w}{w}) \sin wx \, dw.$$