Course 2E1 2005-06 (SF Engineers & MSISS & MEMS)

Sheet 5

Due: in the tutorial sessions next Wednesday/Thursday

Exercise 1

Use Chain Rule to express $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$ as functions of r and θ in the following cases: (i) $z = xe^y$, $x = r\cos\theta$, $y = r\sin\theta$;

- (ii) $z = \frac{x}{y}, x = r\cos\theta, y = r\sin\theta;$
- (iii) $z = x^2 + y^2 + u^2$, $x = r\cos\theta$, $y = r\sin\theta$, u = r.

Exercise 2

Find the gradient of the function:

- (i) $f(x,y) = x + y^2;$ (ii) $f(x,y) = e^{x-y};$
- (ii) $f(x, y, z) = x(\cos y + \sin z);$

Exercise 3

Find the derivative of the function f at the point P_0 in the direction of the vector **a** (i.e. in the direction of the corresponding unit vector **u**):

(i) f(x,y) = x + y, $P_0(1,0)$, $\mathbf{a} = (1,-1)$; (ii) $f(x,y) = x^2 + y^2$, $P_0(-1,1)$, $\mathbf{a} = (-1,2)$; (iii) $f(x,y,z) = 2e^x \cos(yz)$, $P_0(0,0,0)$, $\mathbf{a} = (1,-1,1)$.