Exercise 1

Use Taylor’s formula to find linear and quadratic approximation at \((x_0, y_0) = (0, 0)\):

Solution. Taylor’s formula for \(f\) at \((x_0, y_0)\) yields the linear and quadratic approximations \(L(x, y)\) and \(Q(x, y) = L(x, y) + R(x, y)\), where

\[
L(x, y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0),
\]

\[
R(x, y) = \frac{1}{2}f_{xx}(x_0, y_0)(x - x_0)^2 + f_{xy}(x_0, y_0)(x - x_0)(y - y_0) + \frac{1}{2}f_{yy}(x_0, y_0)(y - y_0)^2.
\]

(i) \(f(x, y) = x^2 e^y\);

Solution. For the linear approximation, we need to calculate the value and the first order partial derivatives at \((0, 0)\): \(f(0, 0) = f_x(0, 0) = f_y(0, 0) = 0\). Hence the linear approximation is

\[L(x, y) = 0.\]

For the quadratic approximation, we need to calculate the second order partial derivatives at \((0, 0)\): \(f_{xx}(0, 0) = 2, f_{xy}(0, 0) = f_{yy}(0, 0) = 0\), and hence

\[Q(x, y) = x^2.\]

(ii) \(f(x, y) = x \sin y\);

Solution. For the linear approximation we have: \(f(0, 0) = f_x(0, 0) = f_y(0, 0) = 0\).

Hence the linear approximation is

\[L(x, y) = 0.\]

For the quadratic approximation, we have: \(f_{xx}(0, 0) = f_{yy}(0, 0) = 0, f_{xy}(0, 0) = 1\) and hence

\[Q(x, y) = xy.\]
(iii) \(f(x, y) = \frac{1}{1+x+y}; \)

Solution. For the linear approximation we have: \(f(0, 0) = 1, f_x(0, 0) = f_y(0, 0) = -1 \). Hence the linear approximation is

\[
L(x, y) = 1 - x - y.
\]

For the quadratic approximation, we have: \(f_{xx}(0, 0) = f_{yy}(0, 0) = 2, f_{xy}(0, 0) = 2 \) and hence

\[
Q(x, y) = 1 - x - y + x^2 + 2xy + y^2.
\]

Exercise 2

Give error estimates for the linear approximations in Exercise 1 for

\[-0.1 \leq x \leq 0.1, \quad -0.2 \leq y \leq 0.2.\]

Solution. The error estimates come from estimating the error term in the Taylor formula (see Chapter 11.10):

\[
|E| \leq \frac{1}{2} M (|x - x_0| + |y - y_0|)^2
\]

where \(M \) is a bound for the next order derivatives \(|f_{xx}|, |f_{xy}| \) and \(|f_{yy}| \). So we need to calculate these derivatives in each case and estimate them in the range specified. We restrict to (i), the solution for (ii) and (iii) is analogous.

(i) \(f(x, y) = x^2 e^y; \)

Solution. We have \(f_{xx} = 2e^y, f_{xy} = 2xe^y, f_{yy} = x^2 e^y \). Then for \(x \) and \(y \) in the above range, we can choose \(M = 2e^{0.2} \) and hence \(|E| \leq \frac{1}{2} 2e^{0.2} (0.1 + 0.2)^2 \).

Exercise 3

Find parametric equations for the normal line at the given point:

(i) to the curve \(x^2 + y^3 = 2 \) at \((1, 1)\);

Solution. The normal line to a curve \(g(x, y) = 0 \) at the point \((x_0, y_0)\), where \(\nabla g(x_0, y_0) \neq 0 \) is the line passing through \((x_0, y_0)\) in the direction of \(\nabla g(x_0, y_0) = (g_x(x_0, y_0), g_y(x_0, y_0)) \), hence its parametric equations are

\[
x = x_0 + tg_x(x_0, y_0), \quad y = y_0 + tg_y(x_0, y_0).
\]
Now, for \(g = x^2 + y^3 - 2 \) and \((x_0, y_0) = (1, 1)\), we calculate \(g_x(x_0, y_0) = 2\), \(g_y(x_0, y_0) = 3\) and hence the equations are
\[x = 1 + 2t, \quad y = 1 + 3t, \]
where \(t \) is a free parameter.

(ii) to the surface \(x \cos y + z = 0 \) at \((0, 0, 0)\).

Solution. Similarly, the normal line to a surface \(g(x, y, z) = 0 \) at the point \((x_0, y_0, z_0)\), where \(\nabla g(x_0, y_0, z_0) \neq 0 \), is the line passing through \((x_0, y_0, z_0)\) in the direction of the vector \(\nabla g(x_0, y_0, z_0) = (g_x(x_0, y_0, z_0), g_y(x_0, y_0, z_0), g_z(x_0, y_0, z_0)) \), hence its parametric equations are
\[x = x_0 + t g_x(x_0, y_0, z_0), \quad y = y_0 + t g_y(x_0, y_0, z_0), \quad z = z_0 + t g_z(x_0, y_0, z_0). \]

In our case we obtain \(\nabla g(x_0, y_0, z_0) = (1, 0, 1) \) and hence the parametric equations are
\[x = t, \quad y = 0, \quad z = t. \]

Exercise 4

Sketch the region of integration and evaluate the integral:

(i)
\[\int_{0}^{1} \int_{-1}^{1} x y \, dx \, dy \]

Solution. The region is the rectangular \(-1 \leq x \leq 1, 0 \leq y \leq 1\) and we have
\[\int_{0}^{1} \int_{-1}^{1} x y \, dx \, dy = \int_{0}^{1} \left(\frac{x^2 y}{2} \right)_{x=-1}^{x=1} \, dy = 0. \]

Evaluation for the other cases is analogous. We only outline the regions.

(ii)
\[\int_{0}^{1} \int_{0}^{y} (x + y) \, dx \, dy \]

Solution. The region is the triangular \(0 \leq x \leq y, 0 \leq y \leq 1 \).

(iii)
\[\int_{0}^{1} \int_{0}^{x^2} y \, dy \, dx \]

Solution. The region is bounded by the \(x \)-axis, the vertical line \(y = 1 \) and the parabola \(y = x^2 \).