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Due: in the tutorial sessions first Wednesday/Thursday in the next term

Exercise 1

Find the Fourier series of the function f(z):
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so we have the Fourier Series expansion:
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Solution. The function is odd (f(—z) = —f(x)), so we only need to calculate b,,:
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where u = x and dv = sinnz dx, hence v = —%. Thus
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so we have the Fourier Series expansion:
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Solution. Now the function is even (f(—z) = f(x)), so we only need to calcu-
late a,. Furthermore, if g(x) is even, we can simplify our calculation by the formula
[T _g(z)dz =2 [ g(x) dx. We have
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The end of calculation is similar to the previous case using integration by parts and is

omitted.



