Course 2E1 2004-05 (SF Engineers & MSISS & MEMS)

Sheet 14

Due: in the tutorial sessions next Wednesday/Thursday

Exercise 1

Determine which of the following are subspaces of \mathbb{R}^3 :

(i) the set of all vectors of the form (0, 0, a);

Solution. Given any two vectors in this set $\mathbf{v}_1 = (0, 0, a_1)$ and $\mathbf{v}_2 = (0, 0, a_2)$, their sum is $\mathbf{v}_1 + \mathbf{v}_2 = (0, 0, a_1 + a_2)$ which is again in the set. Give any vector $\mathbf{v} = (0, 0, a)$ in the set and a scalar k, the product $k\mathbf{v} = (0, 0, ka)$ is again in the set. Thus the set is a subspace.

(ii) the set of all vectors of the form (0, 1, a);

Solution. Given any two vectors in this set $\mathbf{v}_1 = (0, 1, a_1)$ and $\mathbf{v}_2 = (0, 1, a_2)$, their sum is $\mathbf{v}_1 + \mathbf{v}_2 = (0, 2, a_1 + a_2)$ which is not in the set. Thus the set is not a subspace.

- (iii) the set of all vectors of the form (a, b, c), where a + b = c;
- (iv) the set of all solutions (x, y, z) of the system x + 2y = 0, z 4y = 0.

Solution. Both sets are sets of solutions of systems of linear homogeneous equations. Hence they are subspaces.

Exercise 2

Determine whether the vectors span \mathbb{R}^3 :

(i) $\mathbf{v}_1 = (1, 0, 1), \, \mathbf{v}_2 = (2, 0, 1), \, \mathbf{v}_3 = (1, 0, 0);$

Solution. The vectors span \mathbb{R}^3 if any vector $\mathbf{v} = (a, b, c)$ can be represented as a linear combination $k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + k_3\mathbf{v}_3$. To check it, we have to solve for k_1, k_2, k_3 the vector equation $\mathbf{v} = k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + k_3\mathbf{v}_3$ that is equivalent to the system

$$\begin{cases} a = k_1 + 2k_2 + 3k_3\\ b = 0k_1 + 0k_2 + 0k_3\\ c = k_1 + 0k_2 + 0k_3. \end{cases}$$

It is clear that the 2nd equation is only solvable for b = 0, hence not for all vectors \mathbf{v} . Thus the vectors do not span \mathbb{R}^3 .

(ii)
$$\mathbf{v}_1 = (1, 0, 1), \, \mathbf{v}_2 = (2, 0, 1), \, \mathbf{v}_3 = (1, 0, 0), \, \mathbf{v}_4 = (1, 1, 0).$$

Solution. Proceeding as before we come to the system (note that we have 4 vectors so we need 4 scalars k_1, k_2, k_3, k_4 for their linear combination):

$$\begin{cases} a = k_1 + 2k_2 + 3k_3 + k_4 \\ b = 0k_1 + 0k_2 + 0k_3 + k_4 \\ c = k_1 + k_2 + 0k_3 + 0k_4 \end{cases} \text{ or } \begin{cases} a = k_1 + 2k_2 + 3k_3 + k_4 \\ b = k_4 \\ c = k_1 + k_2. \end{cases}$$

Now, for any choice of a, b, c, we can find a solution (k_1, k_2, k_3, k_4) . Hence any **v** can be written as a linear combination $k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + k_3\mathbf{v}_3 + k_4\mathbf{v}_4$ and therefore the vectors span \mathbb{R}^3 .

Determine whether the vectors span \mathbb{R}^4 : (iii) $\mathbf{v}_1 = (1, 0, 1, 1), \mathbf{v}_2 = (2, 0, 1, 0), \mathbf{v}_3 = (1, 0, 0, 0), \mathbf{v}_4 = (1, 1, 0, 0).$

Solution. Now we have 4 vectors in \mathbb{R}^4 , so we have a system of 4 equation with 4 unknown scalars:

$$\begin{cases} a = k_1 + 2k_2 + 3k_3 + k_4 \\ b = k_4 \\ c = k_1 + k_2. \\ d = k_1. \end{cases}$$

Again, the system can be always solved, hence the vectors span \mathbb{R}^4 .

Exercise 3

Find parametric equations for the line spanned by the vector:

(i) $\mathbf{u} = (1, 0, 3);$

Solution.

$$x = t, \quad y = 0, \quad z = 3t.$$

(ii) $\mathbf{u} = (1, 0, 3, 0, 5);$

Solution.

$$x_1 = t$$
, $x_2 = 0$, $x_3 = 3t$, $x_4 = 0$, $x_5 = 5t$.

The choice of the variables is arbitrary (but the number is important).

Find an equation for the plane spanned by the vectors: (iii) $\mathbf{u} = (1, 0, 3), \mathbf{v} = (-1, 0, 3);$

Solution. A general plane in \mathbb{R}^3 is given by an equation ax+by+cz = 0 where the coefficients a, b, c are to be determined. The plane will contain the given vectors (1, 0, 3) and (-1, 0, 3) if the equation is satisfied after each of the substitutions (x, y, z) = (1, 0, 3) and (x, y, z) = (-1, 0, 3). Thus we obtain a system

$$\begin{cases} a+3c=0\\ -a+3c=0, \end{cases}$$

from where we have a = c = 0 and b is free. We can choose e.g. b = 1. Then the equation ax + by + cz = 0 becomes y = 0 which is a desired equation.