Course 2E1 2004-05 (SF Engineers & MSISS & MEMS)

Sheet 18

Due: in the tutorial sessions first Wednesday/Thursday in the next term

Exercise 1

Calculate the length of $\mathbf{u} = (1, -1, 1)$, the distance between \mathbf{u} and $\mathbf{v} = (0, 1, 1)$ and the angle between \mathbf{u} and \mathbf{v}

- (i) with respect to the (standard) Euclidean inner product;
- (ii) with respect to the inner product given by $\langle \mathbf{u}, \mathbf{v} \rangle = 2u_1v_1 + 3u_2v_2 + u_3v_3$.

Exercise 2

Which of the following bases are orthogonal and which are orthonormal?

- (i) (1,0), (0,2);
- (ii) (1,0,1), (1,1,-1), (-1,0,1);
- (iii) $(1,0,0), (0,\frac{1}{\sqrt{2}},\frac{-1}{\sqrt{2}}), (0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}});$

Exercise 3

Calculate the coordinates of \mathbf{v} relative to the basis in Exercise 2 (iii):

- (i) $\mathbf{v} = (1, 1, 1);$
- (ii) $\mathbf{v} = (-1, 1, -1)$.

Exercise 4

Use the Gram-Schmidt process to transform $\mathbf{u}_1 = (1, 1, 1)$, $\mathbf{u}_2 = (1, 1, 0)$, $\mathbf{u}_3 = (1, 0, 0)$ into an orthogonal basis.