Exercise 1

Find the matrix for the linear transformations T defined by the equations

(i) $w_1 = x_1$, $w_2 = x_2 - x_1$,
(ii) $w_1 = x$, $w_2 = y + 2z$, $w_3 = -z$,
(iii) $w_1 = x_4$, $w_2 = x_4 - x_3$, $w_3 = x_4 + x_3 - x_2$, $w_4 = x_4 + x_3 + x_2 - x_1$,

and by the formulas

(iv) $T(x_1, x_2) = (-x_1, -x_2)$,
(v) $T(x_1, x_2, x_3) = (x_3, x_1 - x_2, x_1 + 4x_2 + x_3, -2x_2, 5x_3)$.

Exercise 2

Find $T(x) = Ax$ for the matrix A and the vector x whenever the product makes sense (i.e. the sizes of A and x fit together):

(i) $A = \begin{pmatrix} 0 & -1 \\ -1 & -2 \end{pmatrix}$, $x = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$,

(ii) $A = \begin{pmatrix} 0 & 1 & 1 \\ 4 & 0 & -2 \end{pmatrix}$, $x = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$,

(iii) $A = \begin{pmatrix} 1 & -2 & 0 \\ -1 & 14 & 1 \end{pmatrix}$, $x = \begin{pmatrix} -5 \\ 4 \end{pmatrix}$.

Exercise 3

Use matrix multiplication to find:

(i) the reflection of the vector $(2, 1)$ about the x-axis;
(ii) the orthogonal projection of the vector $(2, 1)$ to the y-axis;
(iii) the image of the vector $(2, 1)$ under rotation through the angle $\frac{\pi}{3}$ about the origin.

(v) the image of the vector $(2, 1, -3)$ under rotation through the angle $\frac{\pi}{3}$ about z-axis.