Course 2E02 2011 (SF Engineers & MSISS & MEMS)

Sheet 2

Due: at the end of the tutorial

Exercise 1

Find $T(\mathbf{x}) = A\mathbf{x}$ for the matrix A and the vector \mathbf{x} whenever the product makes sense (i.e. the sizes of A and \mathbf{x} fit together):

(i)
$$A = \begin{pmatrix} 0 & -1 \\ 1 & -2 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$,

(ii)
$$A = \begin{pmatrix} 0 & 2 & 1 \\ -3 & 0 & 2 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$,

(iii)
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & -4 & 1 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} -5 \\ 1 \end{pmatrix}$.

Exercise 2

Use matrix multiplication to find:

- (i) the reflection of the vector (1, -3) about the x-axis;
- (ii) the orthogonal projection of the vector (1, -3) to the y-axis;
- (iii) the image of the vector (-1,2) under rotation through the angle $\frac{\pi}{3}$ about the origin.

Exercise 3

Determine whether the vectors span \mathbb{R}^3 :

(i)
$$\mathbf{v}_1 = (1, -2, -1), \mathbf{v}_2 = (2, -1, 0), \mathbf{v}_3 = (3, 0, 0);$$

Determine whether the vectors span \mathbb{R}^4 :

(ii)
$$\mathbf{v}_1 = (1, 0, -3, 1), \mathbf{v}_2 = (-1, 0, -2, 0), \mathbf{v}_3 = (2, 0, 4, 0), \mathbf{v}_4 = (0, 0, -3, 1).$$